
Efficient Instrumentation and Tracepoint
Insertion for GPU Compute Kernels

Low-overhead Trace Collection on GPU

Sébastien Darche <sebastien.darche at polymtl.ca>

July 8th, 2025

Dorsal - Polytechnique Montréal

1



Current projects at DORSAL lab

• The Distributed Open Reliable Systems Analysis Lab

• Strong focus on trace collection and performance analysis

• LTTng, Trace Compass

2



Tooling for HPC

• Score-P traces support through CTF conversion, ROCm runtime
instrumentation

• Multiple analyses available
• Critical path for linux kernel traces
• Hardware performance counters through Score-P
• Call stack among ranks, statistics
• Flame graph
• Communicators, bandwidth
• Critical path for MPI
• . . .

• Scalability of Trace Compass through distributed analyses (ongoing
work)

• Current work on kernel instrumentation

3



GPU Tracing with hip-analyzer

• Few tools for tracing on GPUs, and often at the cost of very high
performance impact (at minima 10× and up to 120×) [1] [2]

• GPU Tracing is unwieldy : clumsy memory management, massive
parallelism (concurrency control, high throughput)

• Separate buffer allocation and event collection using two kernel runs

• "Online" tracing methods

• LLVM IR (static) instrumentation

4



What’s new ?

• Introduced tracing methods that do not require two executions, but
has its own set of challenges

• Requires specific tuning for the hardware
• Memory locality
• Allocation granularity
• Implementation choices

• Last project focuses on reducing instrumentation in the kernel

5



Results

• Instrumentation tested on the HeCBench [3] benchmark. Overhead
is reported as the slowdown factor between the traced kernel
execution time and the original, uninstrumented kernel.

mean median

hip-trace 2.07× 1.50×
4 × padded hip-trace 2.18× 1.58×

hip-global-mem 3.73× 1.96×
hip-cu-mem 2.47× 1.60×
hip-chunk-allocator 1.79× 1.33×
hip-cu-chunk-allocator 1.77× 1.32×

6



Reducing the number of tracepoints

• For most kernels, the number of tracepoints could be reduced
• Reduction in trace size
• Reduction in run time overhead

• Intuitively, if half of the threads go through an if statement, we can
deduce the other half goes to the else statement

• Can be generalized to switch statements and more complex control
flow (more than two outgoing edges)

Figure 1: AMD GCN Compute unit 1

1Reproduced from AMD GPU Hardware Basics, 2019 Frontier Application Readiness Kick-off Workshop

7



Static analysis

• In an acyclic CFG (simple case), the control flow can be completely
computed by instrumenting n − 1 outgoing edges

• Vertices in the CFG are processed using a variant of Kahn’s
algorithm

∨̇
ei∈incoming

T (ei ) =
∨̇

ei∈outgoing

T (ei ) (1)

• The algorithm does not terminate for CFGs containing a cycle

• We identify back edges using a depth-first search (DFS), and run
the algorithm on the CFG stripped of its cycles. Back edges must be
instrumented.

8



Resulting trace

start

entry

a

c

bd

end

e0

ea

eb

ec

ed

__global__
void simple_kernel() {

entry();
if(c0()) {

a();
if(c1()) {

b();
}
c();

} else {
d();

}
end();
return;

}

9



Static analysis

start

entry

a

c

bd

end

e0

ea

eb

ec

ed

Figure 2: Thread-centric CFG Example

• ea = ed · e0
• ec = ea + eb · ea = ea
• eend = ed + ec = ed + ea = ed + ed · e0 = e0

10



Resulting trace

start

entry

a

c

bd

end

e0

ea

eb

ec

ed

Timestamp Basic block Execution mask

t0 entry 11112

t1 a 01112

t2 b 00102

t3 c 01112

t4 d 10002

t4 end 11112

11



Resulting trace

start

entry

a

c

bd

end

e0

ea

eb

ec

ed

Timestamp Basic block Execution mask

t0 entry 11112

t1 entry → a 01112

t2 a → b 00102

t3 (c) (01112)
t4 (d) (10002)
t4 (end) (11112)

12



Trace size reduction

0.0 0.2 0.4 0.6 0.8 1.0
Relative reduction in number of events

0

1

2

3

4

De
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0
Relative reduction in trace size

0

1

2

3

4

De
ns

ity

Figure 3: Relative reduction in number of events and total trace size

13



Run time overhead

0 20000 40000 60000 80000 100000
Duration (ns)

original

hip-trace

hip-global-mem

hip-cu-mem

hip-chunk-allocator

hip-cu-chunk-allocator

m
et

ho
d

instrumentation
full
optimal

Figure 4: Distribution of kernel run time as a function of collection method
and instrumentation

14



Trade-offs in GPU Tracing – Instrumentation

• Instrumentation methods are intrusive and will modify how the
kernel runs. Tradeoff between :

• Increased register pressure (may affect occupancy)
• Reusing registers (scavenging) will probably mean spills

• Tracepoints will incur a runtime overhead

15



Trade-offs in GPU Tracing – Memory management

• Trace management is a major concern

• Uncertain trace size – may exceed memory

• Synchronization inside kernel bounds is not defined by the memory
model

• "Smarter" trace management methods are more costly (cf
instrumentation)

16



Trade-offs in GPU Tracing – Trace analysis

• What data are we presenting to the end user?

• Thread-centric (programming language) vs. Vector representation
(ISA)

• Large (!) trace files

17



Tradeoffs in GPU Tracing – Future works

• Better compiler support
• Scalar / vector registers specifications
• Scalar / vector instructions
• Intrinsics
• Backend plug-ins?

• Better hardware support
• CU-wide registers and memory access
• Host / Device interaction

• Finer memory model

18



Conclusion and future work

• PhD project is nearing its end

• Explored instrumentation methods for tracing compute kernels

• Studied the performance impact of data structures for online tracing

• Improved baseline results by reducing the number of tracepoints

• Interest for the project from partners

• Available freely on Github, feedback and/or use cases are more than
welcome

19



Sources - Q&A

Q&A

References

[1] D. Shen, S. L. Song, A. Li, and X. Liu, “Cudaadvisor: Llvm-based
runtime profiling for modern gpus,” in Proceedings of the 2018
International Symposium on Code Generation and Optimization, 2018.

[2] Y. Arafa, A.-H. Badawy, A. ElWazir, et al., “Hybrid, scalable,
trace-driven performance modeling of gpgpus,” in Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2021, pp. 1–15.

[3] Z. Jin and J. S. Vetter, “A benchmark suite for improving
performance portability of the sycl programming model,” in
2023 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), IEEE, 2023, pp. 325–327.

20


	References

