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Current projects at DORSAL lab

• The Distributed Open Reliable Systems Analysis Lab

• Strong focus on trace collection and performance analysis

• LTTng, Trace Compass
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Tooling for HPC

• Score-P traces support through CTF conversion, ROCm runtime
instrumentation

• Multiple analyses available
• Critical path for linux kernel traces
• Hardware performance counters through Score-P
• Call stack among ranks, statistics
• Flame graph
• Communicators, bandwidth
• Critical path for MPI
• . . .

• Scalability of Trace Compass through distributed analyses (ongoing
work)

• Current work on kernel instrumentation
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GPU Tracing with hip-analyzer

• Few tools for tracing on GPUs, and often at the cost of very high
performance impact (at minima 10× and up to 120×) [1] [2]

• GPU Tracing is unwieldy : clumsy memory management, massive
parallelism (concurrency control, high throughput)

• Separate buffer allocation and event collection using two kernel runs

• "Online" tracing methods

• LLVM IR (static) instrumentation
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What’s new ?

• Introduced tracing methods that do not require two executions, but
has its own set of challenges

• Requires specific tuning for the hardware
• Memory locality
• Allocation granularity
• Implementation choices

• Last project focuses on reducing instrumentation in the kernel

5



Results

• Instrumentation tested on the HeCBench [3] benchmark. Overhead
is reported as the slowdown factor between the traced kernel
execution time and the original, uninstrumented kernel.

mean median

hip-trace 2.07× 1.50×
4 × padded hip-trace 2.18× 1.58×

hip-global-mem 3.73× 1.96×
hip-cu-mem 2.47× 1.60×
hip-chunk-allocator 1.79× 1.33×
hip-cu-chunk-allocator 1.77× 1.32×
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Reducing the number of tracepoints

• For most kernels, the number of tracepoints could be reduced
• Reduction in trace size
• Reduction in run time overhead

• Intuitively, if half of the threads go through an if statement, we can
deduce the other half goes to the else statement

• Can be generalized to switch statements and more complex control
flow (more than two outgoing edges)

Figure 1: AMD GCN Compute unit 1

1Reproduced from AMD GPU Hardware Basics, 2019 Frontier Application Readiness Kick-off Workshop
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Static analysis

• In an acyclic CFG (simple case), the control flow can be completely
computed by instrumenting n − 1 outgoing edges

• Vertices in the CFG are processed using a variant of Kahn’s
algorithm

∨̇
ei∈incoming

T (ei ) =
∨̇

ei∈outgoing

T (ei ) (1)

• The algorithm does not terminate for CFGs containing a cycle

• We identify back edges using a depth-first search (DFS), and run
the algorithm on the CFG stripped of its cycles. Back edges must be
instrumented.
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Resulting trace
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__global__
void simple_kernel() {

entry();
if(c0()) {

a();
if(c1()) {

b();
}
c();

} else {
d();

}
end();
return;

}
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Static analysis
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Figure 2: Thread-centric CFG Example

• ea = ed · e0
• ec = ea + eb · ea = ea
• eend = ed + ec = ed + ea = ed + ed · e0 = e0
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Resulting trace
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Timestamp Basic block Execution mask

t0 entry 11112

t1 a 01112

t2 b 00102

t3 c 01112

t4 d 10002

t4 end 11112
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Resulting trace

start

entry
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Timestamp Basic block Execution mask

t0 entry 11112

t1 entry → a 01112

t2 a → b 00102

t3 (c) (01112)
t4 (d) (10002)
t4 (end) (11112)
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Trace size reduction
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Figure 3: Relative reduction in number of events and total trace size
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Run time overhead
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Figure 4: Distribution of kernel run time as a function of collection method
and instrumentation
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Trade-offs in GPU Tracing – Instrumentation

• Instrumentation methods are intrusive and will modify how the
kernel runs. Tradeoff between :

• Increased register pressure (may affect occupancy)
• Reusing registers (scavenging) will probably mean spills

• Tracepoints will incur a runtime overhead
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Trade-offs in GPU Tracing – Memory management

• Trace management is a major concern

• Uncertain trace size – may exceed memory

• Synchronization inside kernel bounds is not defined by the memory
model

• "Smarter" trace management methods are more costly (cf
instrumentation)
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Trade-offs in GPU Tracing – Trace analysis

• What data are we presenting to the end user?

• Thread-centric (programming language) vs. Vector representation
(ISA)

• Large (!) trace files
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Tradeoffs in GPU Tracing – Future works

• Better compiler support
• Scalar / vector registers specifications
• Scalar / vector instructions
• Intrinsics
• Backend plug-ins?

• Better hardware support
• CU-wide registers and memory access
• Host / Device interaction

• Finer memory model
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Conclusion and future work

• PhD project is nearing its end

• Explored instrumentation methods for tracing compute kernels

• Studied the performance impact of data structures for online tracing

• Improved baseline results by reducing the number of tracepoints

• Interest for the project from partners

• Available freely on Github, feedback and/or use cases are more than
welcome
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Sources - Q&A

Q&A
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