Efficient Instrumentation and Tracepoint
Insertion for GPU Compute Kernels

Low-overhead Trace Collection on GPU

Sébastien Darche <sebastien.darche at polymtl.ca>

July 8th, 2025

Dorsal - Polytechnique Montréal

Current projects at DORSAL lab

e The Distributed Open Reliable Systems Analysis Lab
e Strong focus on trace collection and performance analysis

e LTTng, Trace Compass

TRACE
COMPASS

Tooling for HPC

e Score-P traces support through CTF conversion, ROCm runtime
instrumentation
e Multiple analyses available

e Critical path for linux kernel traces

e Hardware performance counters through Score-P
e Call stack among ranks, statistics

e Flame graph

e Communicators, bandwidth

e Critical path for MPI

e Scalability of Trace Compass through distributed analyses (ongoing
work)

e Current work on kernel instrumentation

GPU Tracing with hip-analyzer

e Few tools for tracing on GPUs, and often at the cost of very high
performance impact (at minima 10x and up to 120x) [1] [2]

e GPU Tracing is unwieldy : clumsy memory management, massive
parallelism (concurrency control, high throughput)

e Separate buffer allocation and event collection using two kernel runs
e "Online" tracing methods

e LLVM IR (static) instrumentation

e Introduced tracing methods that do not require two executions, but
has its own set of challenges
e Requires specific tuning for the hardware

e Memory locality
e Allocation granularity
e Implementation choices

e Last project focuses on reducing instrumentation in the kernel

e Instrumentation tested on the HeCBench [3] benchmark. Overhead
is reported as the slowdown factor between the traced kernel
execution time and the original, uninstrumented kernel.

mean median

hip-trace 2.07x 1.50x
4 x padded hip-trace 2.18x 1.58x
hip-global-mem 3.73x% 1.96x
hip-cu-mem 2.47x 1.60x
hip-chunk-allocator 1.79x 1.33x
hip-cu-chunk-allocator | 1.77Xx 1.32x

Reducing the number of tracepoints

e For most kernels, the number of tracepoints could be reduced

e Reduction in trace size
e Reduction in run time overhead

e Intuitively, if half of the threads go through an if statement, we can
deduce the other half goes to the else statement

e Can be generalized to switch statements and more complex control
flow (more than two outgoing edges)

Scheduler ‘

I I 11]

SGPR

Figure 1: AMD GCN Compute unit *

1Reproduced from AMD GPU Hardware Basics, 2019 Frontier Application Readiness Kick-off Workshop

Static analysis

In an acyclic CFG (simple case), the control flow can be completely

computed by instrumenting n — 1 outgoing edges

Vertices in the CFG are processed using a variant of Kahn's
algorithm

\V TEe)= T (1)

ejEincoming e;Eoutgoing

The algorithm does not terminate for CFGs containing a cycle

e We identify back edges using a depth-first search (DFS), and run
the algorithm on the CFG stripped of its cycles. Back edges must be
instrumented.

Resulting trace

__global__
void simple_kernel() {

start

entry();

if(c00)) {
aQ);
if(c1()) {

b(O;

}
clOF

} else {
dQ;

}

end () ;

return;

Static analysis

start

Figure 2: Thread-centric CFG Example

® ;=64 €
® ec =€+ €€ =26

_ 10
® Cond =€+ € =€+ e =es+ € e =€

Resulting trace

start

Timestamp | Basic block | Execution mask

to entry 1111,
t a 0111,
[b 0010,
t3 c 0111,
ta d 1000,
ta end 1111,

11

Resulting trace

start

Timestamp | Basic block | Execution mask

to entry 1111,
t1 entry — a 0111,
3 a—b 0010,
t3 (c) (0111,)
ty (d) (1000,)
ts (end) (1111,)

12

Trace size redu

Density

0.4 0.6
Relative reduction in number of events

Density

0.8 1.0

0.6
Relative reduction in trace size

Figure 3: Relative reduction in number of events and total trace size

13

Run time overhead

smamentatn
[it S = .
iprece ’ —_—
i globabmem
£
Wp-cumem

hip-chunk-allocator

hip-cu-chunk-allocator

|

0 20000 40000 60000 80000 100000

Duration (ns)

Figure 4: Distribution of kernel run time as a function of collection method

and instrumentation

14

Trade-offs in GPU Tracing — Instrumentation

e Instrumentation methods are intrusive and will modify how the
kernel runs. Tradeoff between :

e Increased register pressure (may affect occupancy)
e Reusing registers (scavenging) will probably mean spills

e Tracepoints will incur a runtime overhead

15

Trade-offs in GPU Tracing — Memory management

e Trace management is a major concern
e Uncertain trace size — may exceed memory

e Synchronization inside kernel bounds is not defined by the memory
model

e "Smarter" trace management methods are more costly (cf
instrumentation)

16

Trade-offs in GPU Tracing — Trace analysis

e What data are we presenting to the end user?

e Thread-centric (programming language) vs. Vector representation
(ISA)

e Large (!) trace files

17

Tradeoffs in GPU Tracing — Future works

e Better compiler support
e Scalar / vector registers specifications
e Scalar / vector instructions
e Intrinsics
e Backend plug-ins?
e Better hardware support
e CU-wide registers and memory access

e Host / Device interaction

e Finer memory model

18

Conclusion and future work

e PhD project is nearing its end

e Explored instrumentation methods for tracing compute kernels

e Studied the performance impact of data structures for online tracing
e Improved baseline results by reducing the number of tracepoints

e Interest for the project from partners

e Available freely on Github, feedback and/or use cases are more than

welcome
Q dorsal-lab/hip-analyzer Q dorsal-lab/TraceCompassGpu
Compiler plugin for perfermance analysis of HIP applications Trace Compass GPU plugins
®c++ K2 b1 @®)ava

19

Sources - Q&A

[1]

[2]

E]

Q&A

References

D. Shen, S. L. Song, A. Li, and X. Liu, “Cudaadvisor: Llvm-based
runtime profiling for modern gpus,” in Proceedings of the 2018
International Symposium on Code Generation and Optimization, 2018.

Y. Arafa, A.-H. Badawy, A. EIWazir, et al., “Hybrid, scalable,
trace-driven performance modeling of gpgpus,” in Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2021, pp. 1-15.

Z. Jin and J. S. Vetter, “A benchmark suite for improving
performance portability of the sycl programming model,” in
2023 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), |IEEE, 2023, pp. 325-327.

20

	References

