Understanding GPU Kernels
with Instrumentation

Yumeng Liu
Advisor: John Mellor-Crummey
Rice University

Scalable Tools Workshop 2025

Performance Analysis on a GPU

 (Current tools can provide
* Traces of GPU functions (kernel launch, memory copies, etc.)

* High-level metrics of GPU kernels (GPU utilization, bandwidth utilization, etc.)
* Detailed metrics per instruction (instruction counts, etc.)
* Traces of metrics

A missing feature

e Traces of GPU device function calls inside kernels over kernel execution time

 Why? Behavior of complex kernels may differ greatly across threads

Complex GPU-Accelerated Application: Quicksilver

* A proxy application for a dynamic Monte Carlo particle transport code Mercury, consisting of
a single GPU kernel with thousands of lines of code that invokes other GPU device
functions

cycle_tracking () {

* High-level structure of the GPU kernel for all particles {

do {
 Each GPU thread works on one compute distance to census
particle compute distance to facet
compute distance to reaction
» Each particle keeps evolving until a do segment with shortest distance

increment tallies
} until census, absorbed, escaped

}

termination condition is met

* Work for particles differ between }

threads \

Potential load imbalance, optimization opportunity

Our Goals

e Trace GPU device function calls within kernels to understand thread behavior

 EXxplore potential optimizations

Outline

Our trace tool

Potential optimization opportunities of Quicksilver found with the trace tool
Exploration of an optimization opportunity

Work stealing algorithm among GPU threads

Summary

Outline

 Our trace tool

* Potential optimization opportunities of Quicksilver found with the trace tool
 Exploration of an optimization opportunity

 Work stealing algorithm among GPU threads

e Summary

Instrumentation of GPU Binaries

 Use NVBIt for dynamic binary instrumentation on NVIDIA GPUs
* Add instrumentation to trace function invocations on each thread
* |nstrumentation points
 Before a call (CALL)
 Upon function entry

 Before function exit (RET, EXIT)

Instrumentation of GPU Binaries

* At each instrumentation point, emit a record containing
e Warp ID + Mask => Thread ID - who
 TJimestamp - when

 Address (Special: EXIT will be 0) - where

Moving Trace Records to CPU

 Use ChannelDev/ChannelHost objects from NVBIit to move records back to CPU

e One buffer on GPU, one buffer on CPU, flush the buffer when it’s full

Processing Trace Stream on CPU

* Input: a stream of records containing who (thread id), where (function), when (timestamp)

* Qutput: Calling Context Tree (CCT) and trace, using HPCToolkit measurement format

void foo() A
// ...
bar();
// ...
bar () ;
// ...

callsite, 1

callsite, 2

Callsite information
differentiates multiple
calls by a function to the
same callee

10

Processing Trace Stream on CPU

Input: a stream of records containing who (thread id), where (function), when (timestamp)

Output: Calling Context Tree (CCT) and trace, using HPCToolkit measurement format

[timestamp, CCT Node D]

callsite, 1 callsite, 2

[tO, O] [t1, 1] [t2, 3] [t3, 1] [t4, O] [t5, 2] [t6, 4] ...

11

Post-mortem Analysis

* Analyze the GPU binary with hpcstruct
* |nterpret the trace data with hpcprof

* View the traces in hpcviewer

12

Outline

 Qur trace tool

 Potential optimization opportunities of Quicksilver found with the trace tool
 Exploration of an optimization opportunity

 Work stealing algorithm among GPU threads

e Summary

13

Quicksilver in Our Tool

Time Range: [Oms, 162ms]

Cross Hair: (25ms, THREAD 58311)

—

(

|
90ms

|
100ms

|
110ms

|
120ms

|
130ms

|
140ms

| I
150ms 160ms

.+ 100,000 particles

e 100,096 threads
* First impression
e A lot of idleness

e Obvious load
iImbalance

14

Quicksilver in Our Tool

TiRge:ll[Oms, 162ms] CrossHleTi-r: (25ms, THREAI?“S:—S-?:H) - " . ® 100,000 part|C|eS

S - * 100,096 threads

* First impression

e A lot of idleness

e Obvious load
iImbalance

 Roughly half
threads start late

I | | | | I | | | | | | | I
20ms 30ms 40ms 90ms 100ms 110ms 120ms 130ms 140ms 150ms 160ms

Quicksilver in Our Tool

€= iteration 1=P<€— |teration 2=P ;<€ iteration 3 =

Timg Range: [Oms, 162ms] Cross Hair: (88ms, THREAD 1579)

||
|I|I 0 A L T
AL L

| | | |
Oms 10ms 20ms 30ms 40ms

| |
150ms 160ms

CycleTrackingFunction(){

do{
calculate an outcome

switch(outcome){

case 1
case 2

twhile(keepTracking);

e Each case

« Some computation

* Decide keepTracking

16

Quicksilver in Our Tool

€= jteration 1P <€ Iteration 2=—P <= iteration 3 e

|
Timg Range: [Oms, 162ms] Cross Hair: (88ms, THREAD 1579) I |
I |

LU T

(LI
[RN I § (B
A

| | | | | | | | | | | | | | | |
Oms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 100ms 110ms 120ms 130ms 140ms 150ms 160ms

e Two imbalance

e |mbalance between
tasks

e |mbalance between
cases within each
iteration

17

Quicksilver in Our Tool

€= jteration 1P <€ Iteration 2=—P <= iteration 3 ey « Two imbalance

Timg Range: [Oms, 162ms] Cross Hair: (88ms, THREAD 1579)

|
0 O AR e X
lﬂll || | e |mbalance between
A 00T AR || I NI tasks
B I TR TR TOTA T T — I [T |
O W1 TTTE AT ETmm v
LRI T | e |Imbalance between
| KRR ORI || .
|III— T U MURCMURC T OO0 cases within each
IIII— o iteration
; — Two optimization
N RRRRHMCOMCRA O+ A | ¥ hm opportunities
IR RN ONMNNOOENAN O AR OATA

1l « Compact tasks
| among threads

| | | | | | | | | | | | | | | |
Oms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 100ms 110ms 120ms 130ms 140ms 150ms 160ms

18

Quicksilver in Our Tool

€= jteration 1P <€ Iteration 2=—P <= iteration 3 e

|
Timg Range: [Oms, 162ms] Cross Hair: (88ms, THREAD 1579) I |

|| (I
1 |]
|
R ||
||II— L LT LU T

(LI
[RN I § (B
A

| | | | | | | | | | | | | | | |
Oms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 100ms 110ms 120ms 130ms 140ms 150ms 160ms

Two imbalance

e |mbalance between
tasks

 |mbalance between
cases within each
iteration
Two optimization
opportunities

« Compact tasks
among threads

 Each thread executes
short cases until the
next case Is the long
one, and all the
threads work on the
long case together

Outline

 Qur trace tool

 Potential optimization opportunities of Quicksilver found with the trace tool
 Exploration of an optimization opportunity

 Work stealing algorithm among GPU threads

e Summary

20

Exploration with Mini Proxy App

N threads and N tasks, each thread works for one task, N = 100,096

Each task can be either SHORT (5 * 100,000 additions) or LONG (100 * 100,000 additions)
Terms:

* Even threads: threads with even id

* (0Odd threads: threads with odd id

* First half threads: threads with id in [0, N/2)

 Second half threads: threads with id in [N/2, N)

21

Mini Proxy App - Potential Benefits

« Same amount of total workload, different threads assignment (who get what task)

Version LONG task SHORT task
odd-even even threads odd threads
long-short first half second half

short-long second half first half

22

Mini Proxy App - Version odd-even

Time Range: [Oms, 308ms] Cross Hair: (300ms, THREAD 43499)

o L o time: 336.0 ms
IT:: ” A L L R t ime - 234 - 2 ms
i S e \E IS o) i
| time: 233.2 ms
e T time: 233.5 ms
S ,,fﬁ“f';f?;ﬁffff“?f o time: 233.5 ms
e ————————————— . time: 233.5 ms
: L time: 233.5 ms
"_ Ty bty e AT o T D R R L T T L time: 233.5 ms

G T e e e i R e S S e e Correctness check: PASSED
_I. I:_III':."..IJ ' .'..'. 3, u's ..I '.'. .' ‘;I'. '... ORI TRt PR ! .'...'l. I:I .'l .:.l.' I. ; . '

'
.
II L l[
' o
II] [
. .
I
k o by 1 i I I N 1)
. b Fac
'-_ -
as . i
I’
|

Y | ’ | . | ’ | . | . | . | . | . | . | ; | . | ’ | . | ’ |
Oms 20ms 40ms 60ms 80ms 100ms 120ms 140ms 160ms 180ms 200ms 220ms 240ms 260ms 280ms 300ms

Mini Proxy App - Version long-short

Time Range: [Oms, 150ms] Cross Hair: (75ms, THREAD 49892) time: 197_5 ms

BT v g i L e e S s L e L T T time: 147.6 ms
G B S e R e T e e R e T time: 120.7 ms

m ’T?@ﬁgﬁﬁfﬁquﬁj?anﬁfn?jﬁ;;ﬁwfﬁﬁ}g*jfﬁﬁj@jmﬁi"ﬁfﬁﬁ“?jp“' | time: 120.6 ms

N L L B I time: 120.8 ms

RN ;}} _Q;;fgj;}lggfﬁzpihﬁgﬁﬁtgﬁijtgfﬁﬁﬁfﬂ - time: 120.5 ms

T e e BN A e e e el Tt RGBS e time: 120.5 ms

e I an Ll R e S T T e T ————— - time: 120.5 ms

A T I L b R R time: 120.5 ms

:
oL
l Is i
0= Oq
i '
I- - -
e — s
= .—".'
- ™.
. =
I:'_'. 1 I"I
kv
o L
1 ..
O
" : L]
- - —— = L] -II
r ol ' -
s - o
e b ;
I L .
v e L
b I I
p, A V-
B . . -
L -
. -
1
[} - .
o : T TR
s " I. L] L]
. et B I
. o
: e 0Tt
o -
:.' Tl | u'm
Ty =EE
I o
o - — o
f - " am "k
o e e
i ! o
r

| | | | | | | | | | | | | |
Oms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 100ms 110ms 120ms 130ms 140ms 150ms

Mini Proxy App - Version short-long

Time Range: [Oms, 180ms]

R L
&

u

-

i
'

e
L™
-
-
'
'
.I
'
1
il .
-
”m
L
-I .1
ol

Cross Hair: (111ms, THREAD 51451)

' i :
J ! .

f
Oms

T
10ms

T
20ms

T
30ms

T
40ms

T
50ms

T
60ms

T
70ms

T
80ms

T
90ms

I
100ms

T
110ms

T
120ms

T
130ms

T
140ms

T
150ms

T
160ms

T
170ms

time:
time:
time:
time:
time:
time:

time:
time:
time:
time:
Correctness check: PASSED

255: 3
157.8
D
157.1
17/ 5 1
156.9
157.5
1 s |
157.2
157.2

ms
ms
ms
ms
ms
ms
ms
ms
ms
ms

25

Compact Work is Faster

odd-even short-long

Time Range: [Oms, 308ms] Cross Hair: (300ms, THREAD 43499)

I()ms 20||'ns 40:115 60:'ns 80|ms 10C;ms

time:
time:
time:
time:
time:

time:
time:
time:
time:
time:
Correctness check: PASSED

T T
120ms 140ms

336.0
234.2
233.5
233102
233.5
233.5
233.5
233.5
2335
233.5

160|ms

ms
ms
ms
ms
ms
ms
ms
ms
ms
ms

T
180ms

Slow

ZOdms

T
220ms

T
240ms

266ms

T
280ms

30(5ms

L

Time Range: [Oms, 150ms] Cross Hair: (75ms, THREAD 49892

long-short

I
Oms

T
10ms

T
20ms

T
30ms

T T
40ms 50ms

time:
time:
time:
time:
time:
time:

time:
time:
time:
time:
Correctness check: PASSED

1.94x Faster

T T
60ms 70ms

197.5
147.6
120.7
120.6
120.8
120.5
120.5
120.5
120.5
120.5

T
80ms

ms
ms
ms
ms
ms
ms
ms
ms
ms
ms

T
90ms

T
100ms

T
110ms

T
120ms

T
130ms

T
140ms 150ms

000

Time Range: [Oms, 180ms] Cross Hair: (111ms, THREAD 51451)

r
Oms

T
10ms

T
20ms

T
30ms

T
40ms

T T T
50ms 60ms 70ms

time:
time:
time:
time:
time:
time:
time:
time:
time:
time:

T T
80ms 90ms

255.3
157.8
1157 o1
157.1
157.1
156.9
157.5
157.1
157.2
157.2

T
100ms

ms
ms
ms
ms
ms
ms
ms
ms
ms
ms

T T T T T T T
110ms 120ms 130ms 140ms 150ms 160ms 170ms

Correctness check: PASSED

1.49x Faster

20

Outline

Our trace tool

Potential optimization opportunities of Quicksilver found with the trace tool
Exploration of an optimization opportunity

Work stealing algorithm among GPU threads

Summary

27

Work Stealing Among GPU Threads

* |In Quicksilver, unknown workload imbalance between threads motivates dynamic work
stealing

 Pay attention
* Avoid thread-level spin loop
 Otherwise, one thread spinning may block the rest in its warp
« Use _ syncwarp()

e (Consider the scenario that not all the threads start at the same time

28

Work Stealing Among GPU Threads

e Each thread starts with its own task, and in each iteration
o Step 1: works on its task
o Step 2: decides if it should
e give another thread its task
 get another thread’s task
* exit
* nothing
» Step 3: behaves according to the decision from Step 2

o Step 4: _ syncwarp()

29

Work Stealing Among GPU Threads

* How to decide if the thread is a giver or getter or none?

* Global variable done: number of finished tasks
« Giver: threads with id in [N - done, N) && its task still has remaining work

« Getter: threads with id in [0, N - done) && its task has no remaining work

Who gives to whom is decided
dynamically, this is one example

N -5

Work Stealing Among GPU Threads

* How to give or get? Use atomic swap

Task 1 giver_count =0

getter_count =0
Task 2

| | I | 1 I |

31

Work Stealing Among GPU Threads

* How to give or get? Use atomic swap

atomic add

———— giver_count =0

return O

getter_count =0

| | I | 1 I |

32

Work Stealing Among GPU Threads

* How to give or get? Use atomic swap

giver_count = 1

getter_count =0

atomic swap
‘\I\> _1

Giver 1 gets -1

Slot 0 gets giver 1’s task

33

Work Stealing Among GPU Threads

* How to give or get? Use atomic swap

giver_count = 1
atomic add

@ > getter count=0
returnO

| | I | 1 I

34

Work Stealing Among GPU Threads

* How to give or get? Use atomic swap

giver_count = 1

H getter_count = 1

Slot 0 gets -1 1

atomic swap @

Getter 1 gets 1 as its next task id

-1
-1

35

Work Stealing Among GPU Threads

* How to give or get? Use atomic swap

giver_count = 1
atomic add

@ - getter_count =1
return1

| | I | 1 I |

36

Work Stealing Among GPU Threads

* How to give or get? Use atomic swap

giver_count = 1

@ getter_count = 2

atomic swap

Slot 1 gets -1 -1

4/@

Getter 2 gets back -1

DO NOT spin waiting here, just

try again in the next iteration

37

Work Stealing Among GPU Threads

 Each thread starts with its own task, and in each iteration
« Step 1: works on its task \
Only if it is NOT trying to get or give
o Step 2: decides if it should
e give another thread its task
 get another thread’s task
Only try one time of get() or give() in each iteration
e exit
* nothing

» Step 3: behaves according to the decision from Step 2

o Step 4: _ syncwarp()

33

Work Stealing Among GPU Threads - Quicksilver

Time Range: [Oms, 126ms] Cross Hair: (38ms, THREAD 49892)

— - ! ! - - ! . = . . c

e Successfully
compacted tasks

| I | I | | I | | | | |
Oms 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 100ms 110ms 120ms

39

Work Stealing Among GPU Threads - Quicksilver

Time Range: [Oms, 126ms] Cross Hair: (38ms, THREAD 49892)

CnT Y o

|
50ms

|
60ms

I
70ms

|
80ms

|
90ms

|
100ms

|
110ms

|
120ms

Successfully
compacted tasks

Threads started
late find no work
to do and just exit

Threads keep
trying to get()
when only small
amount of task
remained

40

Outline

Our trace tool

Potential optimization opportunities of Quicksilver found with the trace tool
Exploration of an optimization opportunity

Work stealing algorithm among GPU threads

Summary

41

Summary

* Binary instrumentation of GPU device functions within complex kernels reveals potential

optimization opportunities

 (Compacting threads with work into small amount of active blocks improves the performance
* A study of Quicksilver revealed two opportunities for optimizations

e |mbalance between tasks
e |mbalance between cases within each iteration

 Work stealing algorithm on GPU threads seems promising to accelerate the kernel

42

