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Performance Analysis on a GPU

 (Current tools can provide
* Traces of GPU functions (kernel launch, memory copies, etc.)

* High-level metrics of GPU kernels (GPU utilization, bandwidth utilization, etc. )
* Detailed metrics per instruction (instruction counts, etc.)
* Traces of metrics

A missing feature

e Traces of GPU device function calls inside kernels over kernel execution time

 Why? Behavior of complex kernels may differ greatly across threads



Complex GPU-Accelerated Application: Quicksilver

* A proxy application for a dynamic Monte Carlo particle transport code Mercury, consisting of
a single GPU kernel with thousands of lines of code that invokes other GPU device
functions

cycle_tracking () {

* High-level structure of the GPU kernel for all particles {

do {
 Each GPU thread works on one compute distance to census
particle compute distance to facet
compute distance to reaction
» Each particle keeps evolving until a do segment with shortest distance

increment tallies
} until census, absorbed, escaped

}

termination condition is met

* Work for particles differ between }

threads \

Potential load imbalance, optimization opportunity



Our Goals

e Trace GPU device function calls within kernels to understand thread behavior

 EXxplore potential optimizations
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Instrumentation of GPU Binaries

 Use NVBIt for dynamic binary instrumentation on NVIDIA GPUs
* Add instrumentation to trace function invocations on each thread
* |nstrumentation points
 Before a call (CALL)
 Upon function entry

 Before function exit (RET, EXIT)



Instrumentation of GPU Binaries

* At each instrumentation point, emit a record containing
e Warp ID + Mask => Thread ID - who
 TJimestamp - when

 Address (Special: EXIT will be 0) - where



Moving Trace Records to CPU

 Use ChannelDev/ChannelHost objects from NVBIit to move records back to CPU

e One buffer on GPU, one buffer on CPU, flush the buffer when it’s full



Processing Trace Stream on CPU

* Input: a stream of records containing who (thread id), where (function), when (timestamp)

* Qutput: Calling Context Tree (CCT) and trace, using HPCToolkit measurement format

void foo() A
// ...
bar();
// ...
bar () ;
// ...

callsite, 1

callsite, 2

Callsite information
differentiates multiple
calls by a function to the
same callee
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Processing Trace Stream on CPU

Input: a stream of records containing who (thread id), where (function), when (timestamp)

Output: Calling Context Tree (CCT) and trace, using HPCToolkit measurement format

[timestamp, CCT Node D]

callsite, 1 callsite, 2

[tO, O] [t1, 1] [t2, 3] [t3, 1] [t4, O] [t5, 2] [t6, 4] ...
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Post-mortem Analysis

* Analyze the GPU binary with hpcstruct
* |nterpret the trace data with hpcprof

* View the traces in hpcviewer
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Quicksilver in Our Tool

Time Range: [Oms, 162ms]

Cross Hair: (25ms, THREAD 58311)
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.+ 100,000 particles

e 100,096 threads
* First impression
e A lot of idleness

e Obvious load
iImbalance
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Quicksilver in Our Tool
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* First impression

e A lot of idleness

e Obvious load
iImbalance
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threads start late
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Quicksilver in Our Tool

€= iteration 1=P<€— |teration 2=P ;<€ iteration 3 =

Timg Range: [Oms, 162ms] Cross Hair: (88ms, THREAD 1579)
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CycleTrackingFunction(){

do{
calculate an outcome

switch(outcome){

case 1
case 2

twhile(keepTracking);

e Each case

« Some computation

* Decide keepTracking
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Quicksilver in Our Tool

€= jteration 1P <€ Iteration 2=—P <= iteration 3 e
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e Two imbalance

e |mbalance between
tasks

e |mbalance between
cases within each
iteration
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Quicksilver in Our Tool

€= jteration 1P <€ Iteration 2=—P <= iteration 3 ey « Two imbalance
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Quicksilver in Our Tool

€= jteration 1P <€ Iteration 2=—P <= iteration 3 e
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Two imbalance

e |mbalance between
tasks

 |mbalance between
cases within each
iteration
Two optimization
opportunities

« Compact tasks
among threads

 Each thread executes
short cases until the
next case Is the long
one, and all the
threads work on the
long case together
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Exploration with Mini Proxy App

N threads and N tasks, each thread works for one task, N = 100,096

Each task can be either SHORT (5 * 100,000 additions) or LONG (100 * 100,000 additions)
Terms:

* Even threads: threads with even id

* (0Odd threads: threads with odd id

* First half threads: threads with id in [0, N/2)

 Second half threads: threads with id in [N/2, N)
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Mini Proxy App - Potential Benefits

« Same amount of total workload, different threads assignment (who get what task)

Version LONG task SHORT task
odd-even even threads odd threads
long-short first half second half

short-long second half first half
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Mini Proxy App - Version odd-even

Time Range: [Oms, 308ms] Cross Hair: (300ms, THREAD 43499)
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Mini Proxy App - Version long-short

Time Range: [Oms, 150ms] Cross Hair: (75ms, THREAD 49892) time: 197_5 ms
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Mini Proxy App - Version short-long

Time Range: [Oms, 180ms]
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Compact Work is Faster

odd-even short-long

Time Range: [Oms, 308ms] Cross Hair: (300ms, THREAD 43499)
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Work Stealing Among GPU Threads

* |In Quicksilver, unknown workload imbalance between threads motivates dynamic work
stealing

 Pay attention
* Avoid thread-level spin loop
 Otherwise, one thread spinning may block the rest in its warp
« Use _ syncwarp()

e (Consider the scenario that not all the threads start at the same time
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Work Stealing Among GPU Threads

e Each thread starts with its own task, and in each iteration
o Step 1: works on its task
o Step 2: decides if it should
e give another thread its task
 get another thread’s task
* exit
* nothing
» Step 3: behaves according to the decision from Step 2

o Step 4: _ syncwarp()
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Work Stealing Among GPU Threads

* How to decide if the thread is a giver or getter or none?

* Global variable done: number of finished tasks
« Giver: threads with id in [N - done, N) && its task still has remaining work

« Getter: threads with id in [0, N - done) && its task has no remaining work

Who gives to whom is decided
dynamically, this is one example

N -5




Work Stealing Among GPU Threads

* How to give or get? Use atomic swap

Task 1 giver_count =0

getter_count =0
Task 2

| | I | 1 I |
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Work Stealing Among GPU Threads

* How to give or get? Use atomic swap

atomic add

———— giver_count =0

return O

getter_count =0

| | I | 1 I |
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Work Stealing Among GPU Threads

* How to give or get? Use atomic swap

giver_count = 1

getter_count =0

atomic swap
‘\I\> _1

Giver 1 gets -1

Slot 0 gets giver 1’s task
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Work Stealing Among GPU Threads

* How to give or get? Use atomic swap

giver_count = 1
atomic add

@ > getter count=0
returnO

| | I | 1 I
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Work Stealing Among GPU Threads

* How to give or get? Use atomic swap

giver_count = 1

H getter_count = 1

Slot 0 gets -1 1

atomic swap @

Getter 1 gets 1 as its next task id

-1
-1
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Work Stealing Among GPU Threads

* How to give or get? Use atomic swap

giver_count = 1
atomic add

@ - getter_count =1
return1

| | I | 1 I |
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Work Stealing Among GPU Threads

* How to give or get? Use atomic swap

giver_count = 1

@ getter_count = 2

atomic swap

Slot 1 gets -1 -1

4/@

Getter 2 gets back -1

DO NOT spin waiting here, just

try again in the next iteration
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Work Stealing Among GPU Threads

 Each thread starts with its own task, and in each iteration
« Step 1: works on its task \
Only if it is NOT trying to get or give
o Step 2: decides if it should
e give another thread its task
 get another thread’s task
Only try one time of get() or give() in each iteration
e exit
* nothing

» Step 3: behaves according to the decision from Step 2

o Step 4: _ syncwarp()
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Work Stealing Among GPU Threads - Quicksilver

Time Range: [Oms, 126ms] Cross Hair: (38ms, THREAD 49892)
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Work Stealing Among GPU Threads - Quicksilver

Time Range: [Oms, 126ms] Cross Hair: (38ms, THREAD 49892)
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Summary

* Binary instrumentation of GPU device functions within complex kernels reveals potential

optimization opportunities

 (Compacting threads with work into small amount of active blocks improves the performance
* A study of Quicksilver revealed two opportunities for optimizations

e |mbalance between tasks
e |mbalance between cases within each iteration

 Work stealing algorithm on GPU threads seems promising to accelerate the kernel
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