
Understanding GPU Kernels
with Instrumentation

Yumeng Liu

Advisor: John Mellor-Crummey

Rice University

Scalable Tools Workshop 2025

Performance Measurement,
Analysis, and Optimization of
GPU-accelerated Applications

Keren Zhou
Advisor: Prof. John Mellor-Crummey

Rice University

1/1/24 1

Performance Analysis on a GPU

2

• Current tools can provide

• Traces of GPU functions (kernel launch, memory copies, etc.)

• High-level metrics of GPU kernels (GPU utilization, bandwidth utilization, etc.)

• Detailed metrics per instruction (instruction counts, etc.)

• Traces of metrics

• A missing feature

• Traces of GPU device function calls inside kernels over kernel execution time

• Why? Behavior of complex kernels may differ greatly across threads

Complex GPU-Accelerated Application: Quicksilver

3

• A proxy application for a dynamic Monte Carlo particle transport code Mercury, consisting of
a single GPU kernel with thousands of lines of code that invokes other GPU device
functions

• High-level structure of the GPU kernel

• Each GPU thread works on one
particle

• Each particle keeps evolving until a
termination condition is met

• Work for particles differ between
threads

Potential load imbalance, optimization opportunity

Our Goals

4

• Trace GPU device function calls within kernels to understand thread behavior

• Explore potential optimizations

Outline

5

• Our trace tool

• Potential optimization opportunities of Quicksilver found with the trace tool

• Exploration of an optimization opportunity

• Work stealing algorithm among GPU threads

• Summary

Outline

6

• Our trace tool

• Potential optimization opportunities of Quicksilver found with the trace tool

• Exploration of an optimization opportunity

• Work stealing algorithm among GPU threads

• Summary

Instrumentation of GPU Binaries

7

• Use NVBit for dynamic binary instrumentation on NVIDIA GPUs

• Add instrumentation to trace function invocations on each thread

• Instrumentation points

• Before a call (CALL)

• Upon function entry

• Before function exit (RET, EXIT)

Instrumentation of GPU Binaries

8

• At each instrumentation point, emit a record containing

• Warp ID + Mask => Thread ID - who

• Timestamp - when

• Address (Special: EXIT will be 0) - where

Moving Trace Records to CPU

9

• Use ChannelDev/ChannelHost objects from NVBit to move records back to CPU

• One buffer on GPU, one buffer on CPU, flush the buffer when it’s full

Processing Trace Stream on CPU

10

• Input: a stream of records containing who (thread id), where (function), when (timestamp)

• Output: Calling Context Tree (CCT) and trace, using HPCToolkit measurement format

bar(), 3

foo(), 0

callsite, 1 callsite, 2

bar(), 4

… …

Callsite information
differentiates multiple
calls by a function to the
same callee

• Input: a stream of records containing who (thread id), where (function), when (timestamp)

• Output: Calling Context Tree (CCT) and trace, using HPCToolkit measurement format

11

bar(), 3

foo(), 0

callsite, 1 callsite, 2

bar(), 4

… …

[t0, 0] [t1, 1] [t2, 3] [t3, 1] [t4, 0] [t5, 2] [t6, 4] …
[timestamp, CCT Node ID]

Processing Trace Stream on CPU

Post-mortem Analysis

12

• Analyze the GPU binary with hpcstruct

• Interpret the trace data with hpcprof

• View the traces in hpcviewer

Outline

13

• Our trace tool

• Potential optimization opportunities of Quicksilver found with the trace tool

• Exploration of an optimization opportunity

• Work stealing algorithm among GPU threads

• Summary

Quicksilver in Our Tool

14

• 100,000 particles

• 100,096 threads

• First impression

• A lot of idleness

• Obvious load
imbalance

Quicksilver in Our Tool

15

• 100,000 particles

• 100,096 threads

• First impression

• A lot of idleness

• Obvious load
imbalance

• Roughly half
threads start late

Quicksilver in Our Tool

16

iteration 1 Iteration 2 iteration 3 … CycleTrackingFunction(){

do{

calculate an outcome

switch(outcome){

case 1

case 2

…

}

}while(keepTracking);

}

• Each case

• Some computation

• Decide keepTracking

Quicksilver in Our Tool

17

• Two imbalance

• Imbalance between
tasks

• Imbalance between
cases within each
iteration

iteration 1 Iteration 2 iteration 3 …

Quicksilver in Our Tool

18

• Two imbalance

• Imbalance between
tasks

• Imbalance between
cases within each
iteration

• Two optimization
opportunities

• Compact tasks
among threads

iteration 1 Iteration 2 iteration 3 …

Quicksilver in Our Tool

19

• Two imbalance

• Imbalance between
tasks

• Imbalance between
cases within each
iteration

• Two optimization
opportunities

• Compact tasks
among threads

• Each thread executes
short cases until the
next case is the long
one, and all the
threads work on the
long case together

iteration 1 Iteration 2 iteration 3 …

Outline

20

• Our trace tool

• Potential optimization opportunities of Quicksilver found with the trace tool

• Exploration of an optimization opportunity

• Work stealing algorithm among GPU threads

• Summary

Exploration with Mini Proxy App

21

• N threads and N tasks, each thread works for one task, N = 100,096

• Each task can be either SHORT (5 * 100,000 additions) or LONG (100 * 100,000 additions)

• Terms:

• Even threads: threads with even id

• Odd threads: threads with odd id

• First half threads: threads with id in [0, N/2)

• Second half threads: threads with id in [N/2, N)

Mini Proxy App - Potential Benefits

22

• Same amount of total workload, different threads assignment (who get what task)

Version LONG task SHORT task

odd-even even threads odd threads

long-short first half second half

short-long second half first half

Mini Proxy App - Version odd-even

23

24

Mini Proxy App - Version long-short

25

Mini Proxy App - Version short-long

26

Compact Work is Faster

Slow 1.94x Faster

odd-even long-short short-long

1.49x Faster

Outline

27

• Our trace tool

• Potential optimization opportunities of Quicksilver found with the trace tool

• Exploration of an optimization opportunity

• Work stealing algorithm among GPU threads

• Summary

Work Stealing Among GPU Threads

28

• In Quicksilver, unknown workload imbalance between threads motivates dynamic work
stealing

• Pay attention

• Avoid thread-level spin loop

• Otherwise, one thread spinning may block the rest in its warp

• Use __syncwarp()

• Consider the scenario that not all the threads start at the same time

Work Stealing Among GPU Threads

29

• Each thread starts with its own task, and in each iteration

• Step 1: works on its task

• Step 2: decides if it should

• give another thread its task

• get another thread’s task

• exit

• nothing

• Step 3: behaves according to the decision from Step 2

• Step 4: __syncwarp()

Work Stealing Among GPU Threads

30

• How to decide if the thread is a giver or getter or none?

• Global variable done: number of finished tasks

• Giver: threads with id in [N - done, N) && its task still has remaining work

• Getter: threads with id in [0, N - done) && its task has no remaining work
N - 5

Who gives to whom is decided
dynamically, this is one example

Work Stealing Among GPU Threads

31

• How to give or get? Use atomic swap

-1
-1
-1
-1
-1
-1
-1

…

giver_count = 0

getter_count = 0

Giver 1

Getter 1

Giver 2

Getter 2

Task 1

Task 2

Work Stealing Among GPU Threads

32

• How to give or get? Use atomic swap

giver_count = 0

getter_count = 0

Giver 1

Getter 1

Giver 2

Getter 2

atomic add

return 0

-1
-1
-1
-1
-1
-1
-1

…

-1
-1
-1
-1
-1
-1
-1

Work Stealing Among GPU Threads

33

• How to give or get? Use atomic swap

giver_count = 1

getter_count = 0

Giver 1

Getter 1

Giver 2

Getter 2

atomic swap

Giver 1 gets -1

Slot 0 gets giver 1’s task

…

Work Stealing Among GPU Threads

34

• How to give or get? Use atomic swap

giver_count = 1

getter_count = 0Getter 1
Giver 2

Getter 2

atomic add

return 0

1
-1
-1
-1
-1
-1
-1

…

• How to give or get? Use atomic swap

1
-1
-1
-1
-1
-1
-1

Work Stealing Among GPU Threads

35

giver_count = 1

getter_count = 1

Getter 1Giver 2

Getter 2

atomic swap

Getter 1 gets 1 as its next task id
Slot 0 gets -1

…

Work Stealing Among GPU Threads

36

• How to give or get? Use atomic swap

giver_count = 1

getter_count = 1Getter 2
Giver 2

atomic add

return 1

-1
-1
-1
-1
-1
-1
-1

…

• How to give or get? Use atomic swap

-1
-1
-1
-1
-1
-1
-1

Work Stealing Among GPU Threads

37

giver_count = 1

getter_count = 2

Getter 2

Giver 2

atomic swap

Getter 2 gets back -1

Slot 1 gets -1

…

DO NOT spin waiting here, just
try again in the next iteration

• Each thread starts with its own task, and in each iteration

• Step 1: works on its task

• Step 2: decides if it should

• give another thread its task

• get another thread’s task

• exit

• nothing

• Step 3: behaves according to the decision from Step 2

• Step 4: __syncwarp()

Work Stealing Among GPU Threads

38

Only try one time of get() or give() in each iteration

Only if it is NOT trying to get or give

Work Stealing Among GPU Threads - Quicksilver

39

• Successfully
compacted tasks

Work Stealing Among GPU Threads - Quicksilver

40

• Successfully
compacted tasks

• Threads started
late find no work
to do and just exit

• Threads keep
trying to get()
when only small
amount of task
remained

Outline

41

• Our trace tool

• Potential optimization opportunities of Quicksilver found with the trace tool

• Exploration of an optimization opportunity

• Work stealing algorithm among GPU threads

• Summary

Summary

42

• Binary instrumentation of GPU device functions within complex kernels reveals potential
optimization opportunities

• Compacting threads with work into small amount of active blocks improves the performance

• A study of Quicksilver revealed two opportunities for optimizations

• Imbalance between tasks

• Imbalance between cases within each iteration

• Work stealing algorithm on GPU threads seems promising to accelerate the kernel

