

TECHNISCHE UNIVERSITÄT DARMSTADT

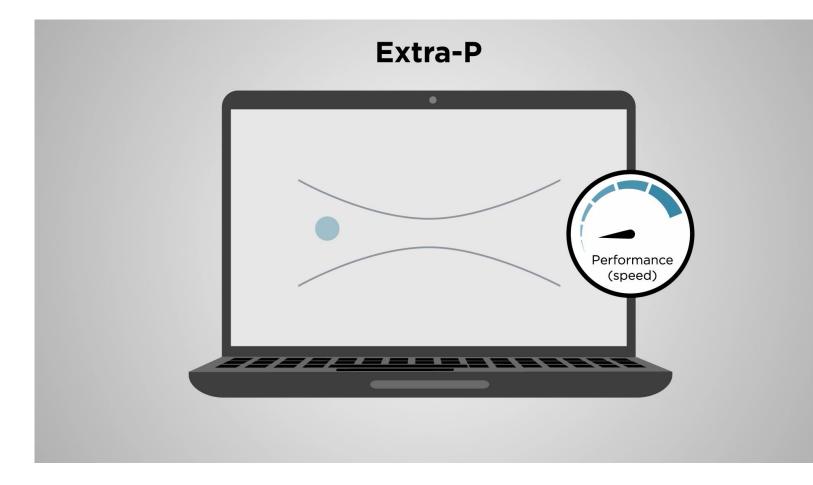
Parallel Programming

Denoising Application Performance Models with Noise-Resilient Priors

Gustavo de Morais¹, Alexander Geiß¹, Alexandru Calotoiu², Gregor Corbin³, Ahmad Tarraf¹, Bernd Mohr³, Torsten Hoefler², and Felix Wolf¹

¹ TU Darmstadt , ² ETH Zürich , ³ Forschungszentrum Jülich

Motivation



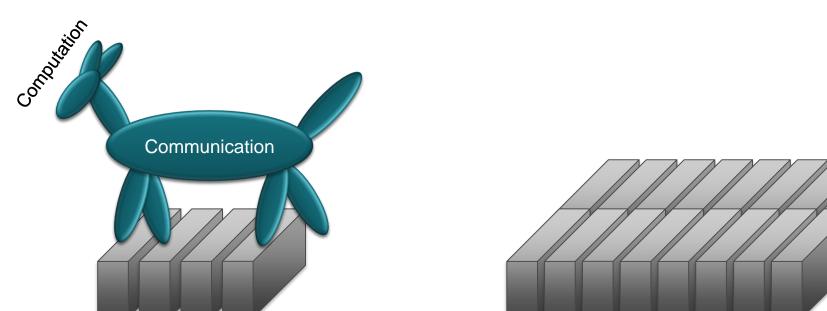
Watch Extra-P overview video

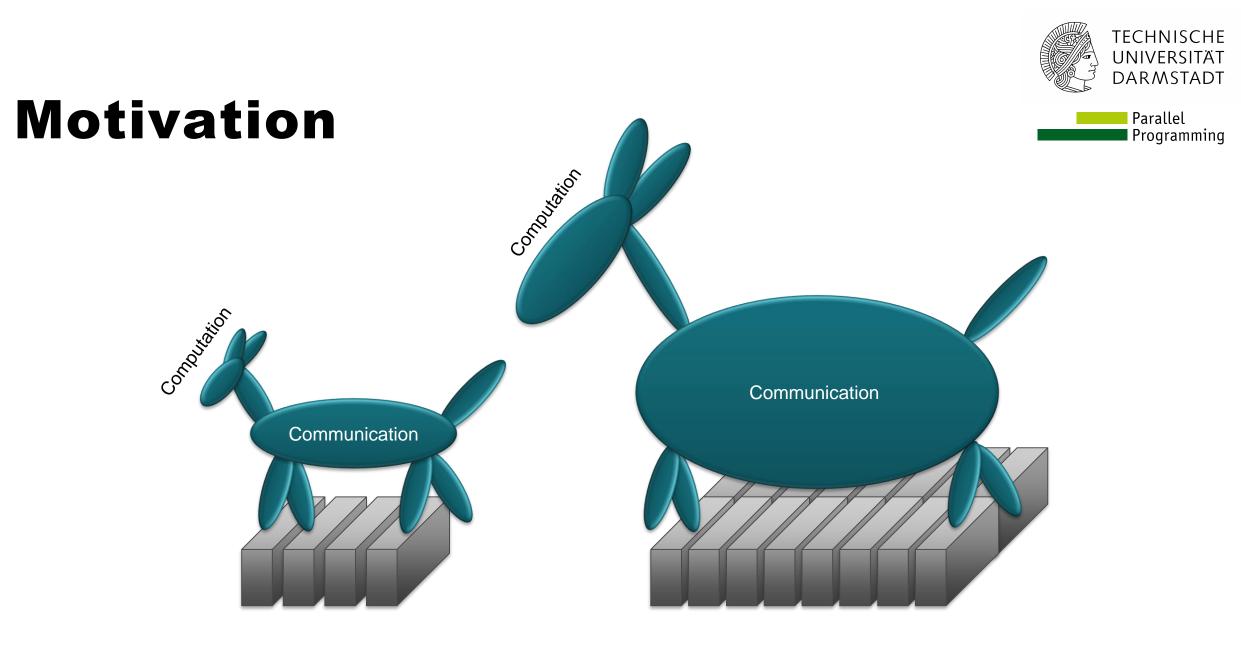
https://www.youtube.com/watc h?v=Cv2YRCMWqBM

Parallel

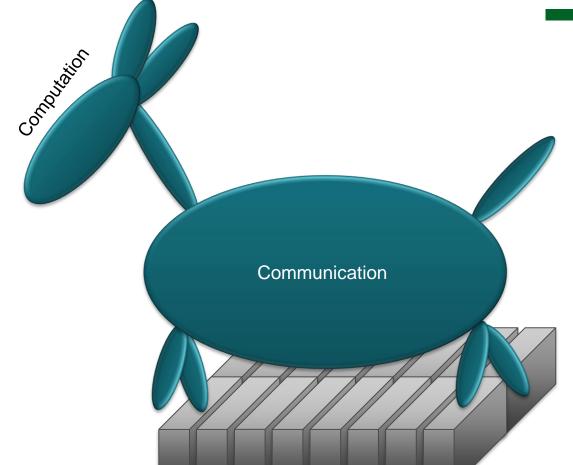
Programming

Motivation





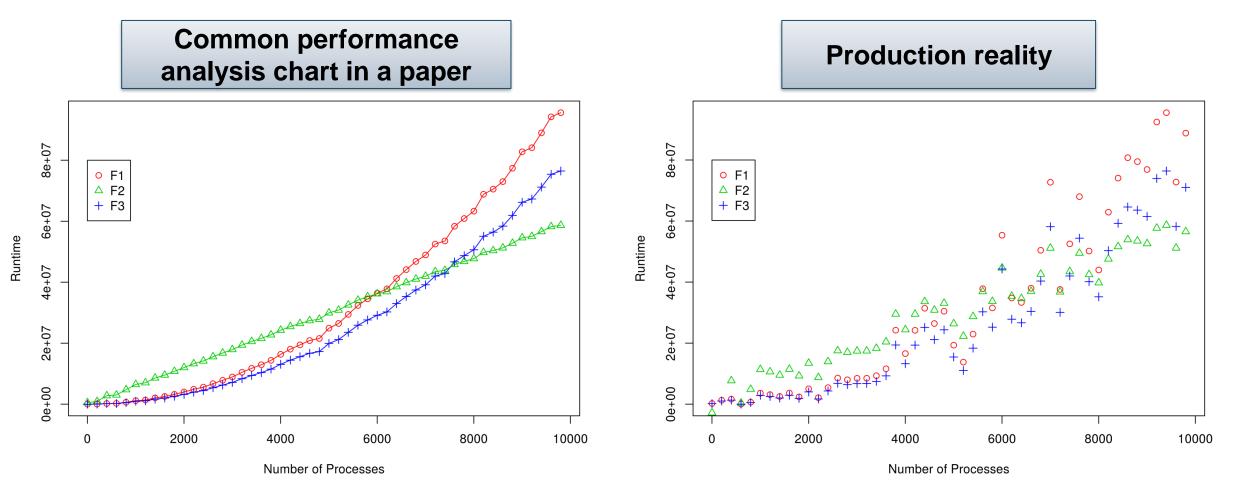
9 July 2025



Motivation

We need to find scaling issues before they occur

Motivation



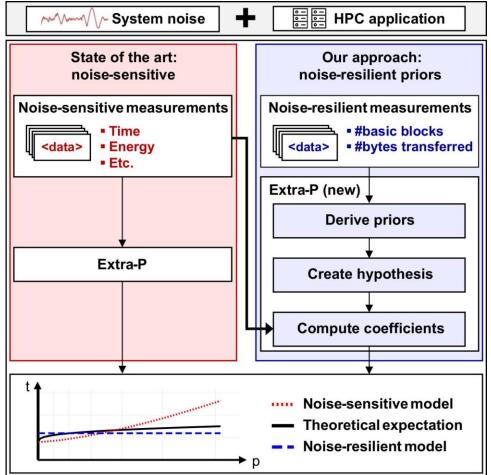
TECHNISCHE UNIVERSITÄT DARMSTADT

> Parallel Programming

Parallel

l Programming

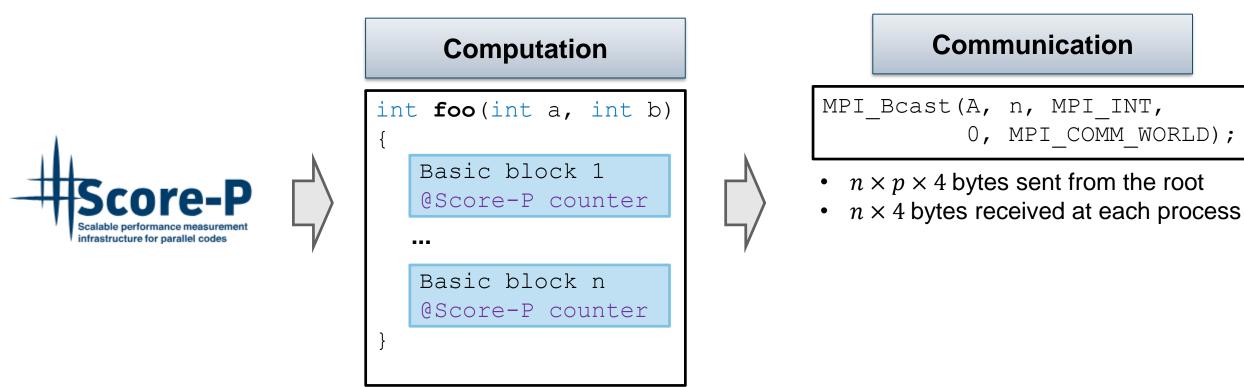
Motivation



The noise-resilient model aligns with the theoretical expectation more closely

Noise-resilient measurements

LLVM-IR [2] plug-in into Score-P [3] framework



Multi-parameter performance modeling

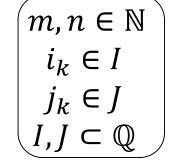
Performance Model Normal Format (PMNF) [1]

$$f(x_1, \dots, x_m) = \sum_{k=1}^n c_k \prod_{l=1}^m x_l^{i_{kl}} \cdot \log_2^{j_{kl}}(x_l)$$

Model candidates

- Constant
- Single parameter $c_1 + c_2 \cdot x_1$
- Multiple parameters
 - Additive
 - Multiplicative
 - Complex

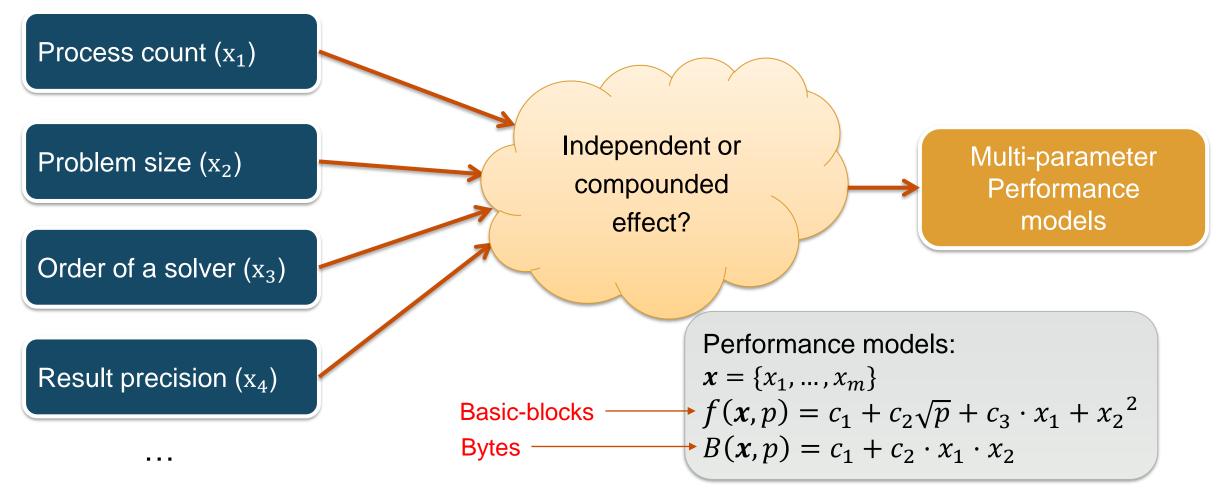
- C_1
- $c_1 + c_2 \cdot x_1 + c_3 \cdot x_2$
 - $c_1 + c_2 \cdot x_1 \cdot x_2$ $c_1 + c_2 \cdot x_1 \cdot x_2 + c_3 \cdot \log x_2 \cdot x_2^3$



. . .

Parallel Programming

Creating models from priors



Creating models from priors

Communication

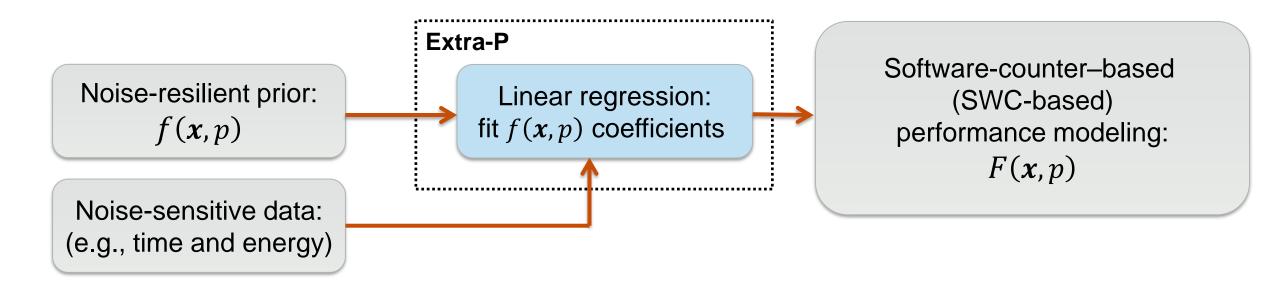
MPI function	Expected runtime	Ref.
Send	$f(\boldsymbol{x}, \boldsymbol{p}) = \alpha + B(\boldsymbol{x}, \boldsymbol{p}) \cdot \boldsymbol{\beta}$	[5]
Receive		
Broadcast	$f(\mathbf{x}, p) = \log_2(p) \cdot \alpha + B(\mathbf{x}, p) \cdot \beta$	[6]
Scatter	$f(\boldsymbol{x}, p) = \log_2(p) \cdot \alpha + B(\boldsymbol{x}, p) \cdot \frac{p-1}{p} \cdot \beta$	[6]
Gather	$p = 10g_2(p) + u + b(u, p) + p$	
Allgather		
Reduce	$f(\mathbf{x}, p) = \log_2(p) \cdot \alpha + \left(\beta + \frac{p-1}{p} \cdot \gamma\right) \cdot B(\mathbf{x}, p)$	[6]
Allreduce	$f(x,p) = \log_2(p) \cdot u + \left(p + \frac{p}{p} \cdot \gamma\right) \cdot b(x,p)$	

	Summary
$f(\boldsymbol{x}, p)$	Prior model
$B(\boldsymbol{x},p)$	Bytes model
x	Input parameters
p	MPI ranks
α	Latency
β	Bandwidth
γ	Computation cost

Parallel

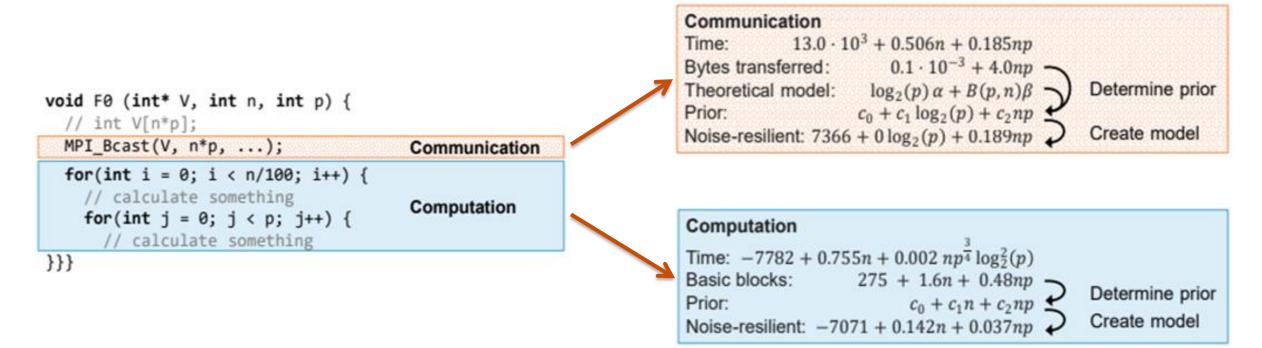
Programming

Creating models from priors



Creating models from priors

Example



TECHNISCHE UNIVERSITÄT DARMSTADT

Parallel

Programming

Benefits

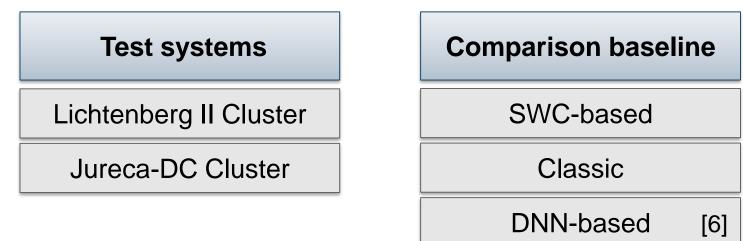
Accuracy

Robustness to noise

Experimental cost

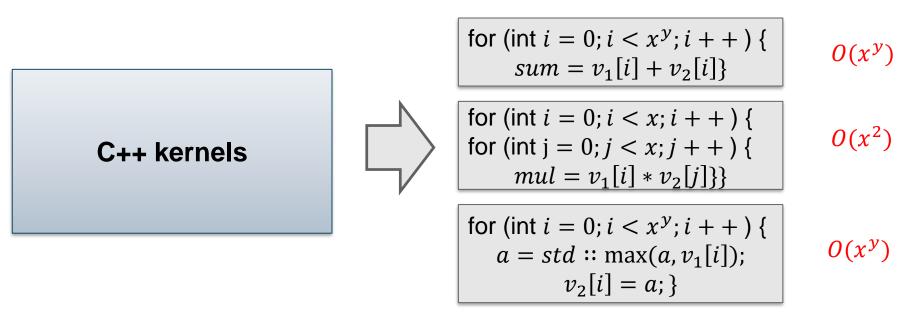
Evaluation

Parallel Programming



Accuracy metrics
Exponent deviation (ED) $ED(f_1(x_i), f_2(x_i)) = n_1 - n_2 $
Relative error (RE) $RE(f_1(x_i)) = \frac{ y_i - f_1(x_i) }{y} \cdot 100\%$

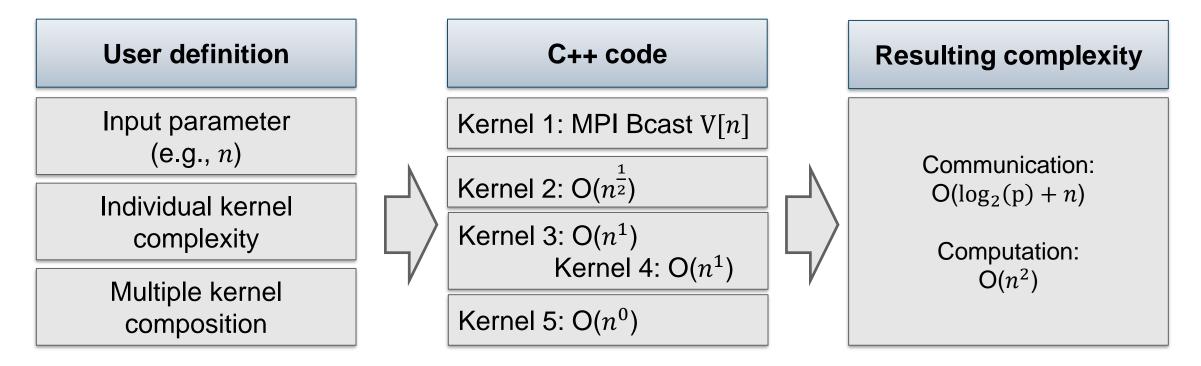
- Benchmark Generator for parallel codes
 - Allows flexibility on the performance behavior
 - Functions with known theoretical analytical complexity



TECHNISCHE UNIVERSITÄT DARMSTADT Parallel

Programming

Benchmark Generator



Programming

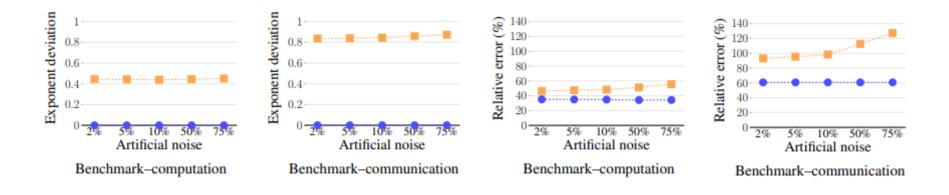
- 200 synthetic functions
- Accuracy
 - Exponent deviation: comparing performance models with their theoretical expectation

Models	Computation	Communication	
	-	MPI ranks	Message size
SWC-based	0	0	0
Classic	0.44	1.14	0.57

- Relative error
 - SWC-based: 35% (computation) and 60% (communication)
 - Classic: 45% (computation) and 91% (communication)

Parallel Programming

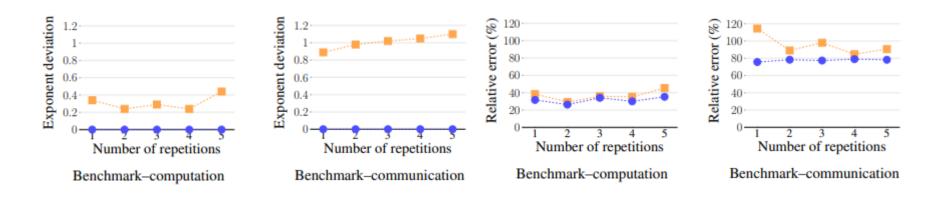
Robustness to noise



9 July 2025

Parallel Programming

Experimental costs



9 July 2025

Application case studies

Parallel Programming

- Kripke [7]
- Relearn [8]

Known theoretical performance

App/System	Training configurations	Test points
Kripke Lichtenberg II	$p \in \{512, 1000, 1728, 2744, 4096\}$ $G \in \{32, 64, 96, 128, 160\}$ $Z \in \{4^3, 8^3, 12^3, 16^3, 20^3\}$	$(p, G, Z) = (5832, 160, 20^3)$ $(p, G, Z) = (4096, 192, 20^3)$ $(p, G, Z) = (4096, 160, 24^3)$
RELeARN Jureca-DC	$p \in \{32, 64, 128, 256, 512\}$ $n \in \{250, 300, 350, 400, 450\}$	(p, n) = (1024, 450) (p, n) = (512, 500)

Parallel

Programming

Evaluation

Application case studies

Accuracy

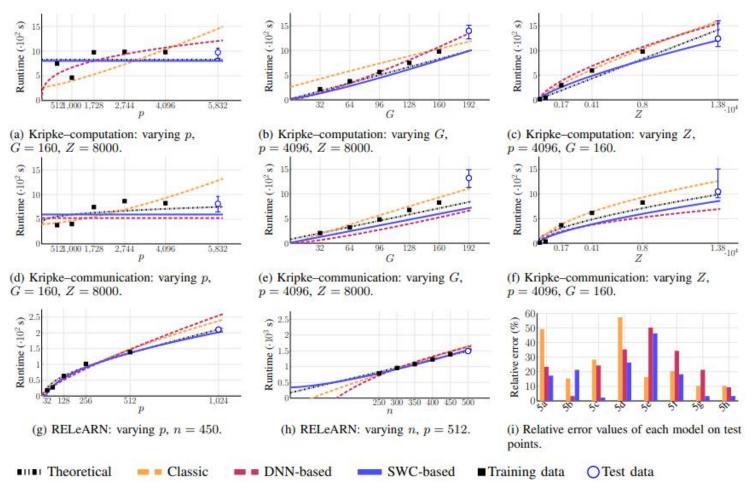
Model	Asymptotic complexity	ED		
Kripke-computation		Δp	ΔG	ΔZ
Theoretical	$\mathcal{O}(G \cdot Z)$			
Classic	$\mathcal{O}(p \cdot \log_2^2(p) \cdot G^{\frac{3}{4}} \cdot \log_2(G) \cdot Z^{\frac{4}{5}})$	1	0.25	0.20
DNN-based	$\mathcal{O}(p \cdot G^{\frac{5}{4}} \cdot Z^{\frac{2}{3}})$	1	0.25	0.33
SWC-based	$\mathcal{O}(G \cdot \log_2(G) \cdot Z^{\frac{3}{4}})$	0	0	0.25
Kripke-com		Δp	ΔG	ΔZ
Theoretical	$\mathcal{O}(p^{\frac{1}{3}} + G \cdot Z^{\frac{2}{3}})$			
Classic	$\mathcal{O}(p^{\frac{4}{3}} \cdot \log_2(p) \cdot G^{\frac{3}{4}} \cdot \log_2(G) \cdot Z^{\frac{1}{3}} \cdot$	1	0.25	0.33
	$\log_2^2(Z))$			
DNN-based	$\mathcal{O}(G^{\frac{5}{4}} \cdot Z^{\frac{1}{2}})$	0.33	0.25	0.16
SWC-based	$\mathcal{O}(G \cdot Z^{\frac{2}{3}})$	0.33	0	0
RELeARN		Δp	Δn	
Theoretical	$\mathcal{O}(p + n \cdot \log_2(n \cdot p))$			
Classic	$\mathcal{O}(p^{\frac{2}{3}} \cdot n^{\frac{3}{4}} \cdot \log_2(n))$	0.33	0.25	
DNN-based	$\mathcal{O}(p^{\frac{2}{3}} \cdot \log_2(p) \cdot n^{\frac{1}{4}})$	0.33	0.75	
SWC-based	$\mathcal{O}(p+n^{\frac{5}{4}}\cdot \log_2(n)\cdot p^{\frac{1}{4}})$	0	0.25	

Parallel

Programming

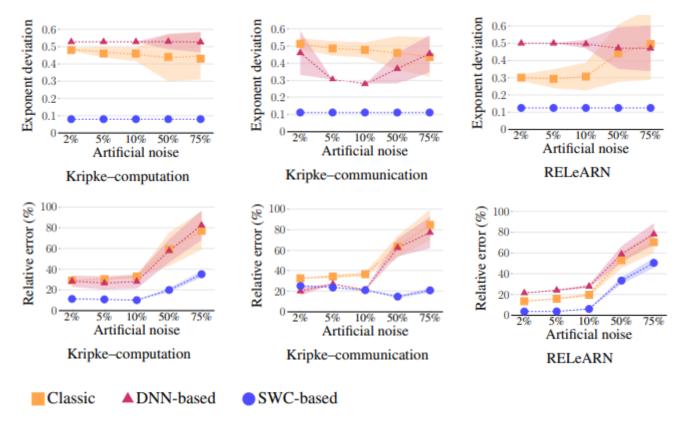
Evaluation

- Application case studies
 - Accuracy
 - Better in 6 out of 8 cases



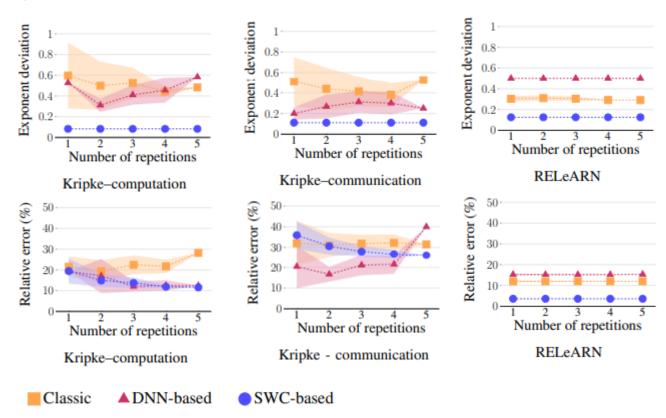
Application case studies

Robustness to noise



Application case studies

Experimental costs



Conclusion

- Our method accurately captures the computational effort of an application in close alignment with its theoretical performance model
- We reduce, if not eliminate, the need for multiple time measurements
- Under artificial noise, our models maintained stable error rates

- Read the full paper at: <u>http://arxiv.org/abs/2504.10996</u>
 - de Morais, G., Geiß, A., Calotoiu, A., Corbin, G., Tarraf, A., Hoefler, T., Mohr, B. and Wolf, F. Denoising Application Performance Models with Noise-Resilient Priors. *arXiv preprint arXiv:2504.10996, 2025*

References

[1] A. Calotoiu, D. Beckinsale, C. W. Earl, T. Hoefler, I. Karlin, M. Schulz, and F. Wolf, "Fast multi-parameter performance modeling," in 2016 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 2016, pp. 172–181.

[2] LLVM admin team. (2023) LLVM website. Accessed 2023/08/21.[Online]. Available: https://llvm.org/

[3] Score-P developer community. (2023) Scalable performance measurement infrastructure for parallel codes (Score-P). Accessed 2023/08/21. [Online]. Available: <u>https://www.vi-hps.org/projects/score-p</u>

[4] W. Zhang, M. Hao, and M. Snir, "Predicting hpc parallel program performance based on llvm compiler," Cluster Computing, vol. 20, pp.1179–1192, 2017.

[5] E. Chan, M. Heimlich, A. Purkayastha, and R. Van De Geijn, "Collective communication: theory, practice, and experience," Concurrency and Computation: Practice and Experience, vol. 19, no. 13, pp. 1749–1783, 2007.

References

[6] M. Ritter, A. Geiß, J. Wehrstein, A. Calotoiu, T. Reimann, T. Hoefler, and F. Wolf, "Noise-resilient empirical performance modeling with deep neural networks," in 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2021, pp. 23–34

[7] A. J. Kunen, T. S. Bailey, and P. N. Brown, "Kripke-a massively parallel transport mini-app," Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), Tech. Rep., 2015

[8] S. Rinke, M. Butz-Ostendorf, M.-A. Hermanns, M. Naveau, and F. Wolf, "A scalable algorithm for simulating the structural plasticity of the brain," Journal of Parallel and Distributed Computing, vol. 120, pp. 251–266, 2018

Programming

Thank you!

- You can contact us via email: extra-p-support@lists.parallel.informatik.tudarmstadt.de
- Or on GitHub using the issues tool: https://github.com/extra-p/extrap

