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High-Level Goals

Boring Goal
Normal Dyninst binary analysis and instrumentation should work for AMDGPU

Interesting Goal
Adapt analysis and instrumentation for SIMD/SIMT architectures:

Abstract SIMD/SIMT control flow operations to a conventional CFG
Represent SIMD/SIMT data flow accurately and compactly 
Efficient Fine Grained Instrumentation

   Fine grained:
Record information at wave or thread level granularity

   Efficient: 
Synchronization-free instrumentation
Use control and data flow analysis to guide instrumentation
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Outline

Background

SIMT, wavefronts and execution mask

Predicated execution and predicated control flow

Binary Analysis of AMDGPU Kernels

Control flow analysis of GPU binaries

Dataflow analysis of GPU binaries

Design Efficient Instrumentation for GPU Applications

Leverage GPU architecture for efficient GPU instrumentation
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Background
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Background – SIMT, Wavefronts and Execution Mask
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Threads grouped in wavefronts (warps) to execute in Single Instruction Multiple Data 
(SIMD)

AMDGPU Kernels uses 64 threads in a wavefront
Each thread in a wavefront (lane)

Shares the same program counter
By default operates on their corresponding lane of the vector data
Can be disabled by clearing a bit in a execution mask register

Single Instruction Multiple Thread - Multiple wavefronts executing the same kernel
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SIMD Processor
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Multiple SIMD processors 
result in SIMT
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Background – Vector Registers & Vector Instructions

v1[63] … v1[2] v1[1] v1[0]

v2[63] … v2[2] v2[1] v2[0]

v1[63]+v2[63] … v1[2]+v2[2] v1[1]+v2[1] v1[0]+v2[0]

1 … 1 1 1Execution Mask

v1

v2

v0

v_add_u32 v0, v1, v2
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Cross Lane Operations – Lane Shifting
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v1[63] … v1[2] v1[1] v1[0]

v2[63] … v2[2] v2[1] v2[0]

unmodified v1[63]+v2[62] … v1[2]+v2[1] v1[1]+v2[0]

v_add_u32 v0, v1, v2 wave_shr:1 v1

v2

v0

1 … 1 1 1Execution Mask



Dyninst Scalable Tools Workshop

10

v1[63] … v1[2] v1[1] v1[0]

v2[63] … v2[2] v2[1] v2[0]

v0[63] … v1[2]+v2[2] v1[1]+v2[1] v0[0]

0 … 1 1 0Execution Mask

Background – Predicated Execution

v1

v2

v0

v_add_u32 v0, v1, v2
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Code in A

Code in B
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threadIdx.x %2 = 1

threadIdx.x %2 = 0

Wavefront View CFG Per Thread View CFG

IF (threadIdx.x % 2) 
{

   A; // odd threads

} ELSE  {

   B; // even threads

}

SAVE EXEC
EXEC = threadIdx.x % 2

Code in A

¬ EXEC

Code in B

Restore EXEC



Binary Analysis for AMDGPU Kernels
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Control Flow Analysis for AMDGPU Kernels

Analyzing control flow at the wavefront level is similar to that of CPU binary

Threads in a wavefront share the same PC

Control flow instructions are scalar

Analyzing per thread control flow is the interesting topic here

Control flow analysis enables data flow analysis

Under predicated control flow, threads can have different control flow 

based on EXEC

IF-THEN-ELSE, DO-WHILE, SWITCH-CASE, SIMT Jump Table

Map these code constructs to conventional code constructs for 

programmer's to understand the semantics of the binaries
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Code in A

Code in B
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threadIdx.x %2 = 1

threadIdx.x %2 = 0

Wavefront View Per Thread View

IF (threadIdx.x % 2) 
{

   A; // odd threads

} ELSE  {

   B; // even threads

}

SAVE EXEC
EXEC = threadIdx.x % 2

Code in A

¬ EXEC

Code in B

Restore EXEC
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Control Flow Analysis for AMDGPU Kernels

Capture and represent per-thread control flow compactly

Threads with the same execution mask shares the same CFG

The exact value of an execution mask might be only known at runtime

Rely on symbolic analysis to determine the set of equivalence classes of 
the symbolic execution mask value (when possible)

For each predicated control flow construct

Generate a per-thread control flow graph per equivalence classes of 
the symbolic execution mask

In the cases where all threads have the same mask, this looks like a 
traditional CFG
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Data Flow Analysis for AMDGPU Kernels

Data flow analysis needs to capture SIMD/SIMT data dependencies 
accurately

Threads can be disabled by the execution mask

For each instruction

Only active threads contribute to the data flow

Vector registers can be partially updated by active threads

The DEF and USE set of instructions need to expand to 
individual lanes of a vector register
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vcc = if(index%2)
s_and_saveexec_b64 s[0:1], vcc
v_add_u32_e32 v1, 10, v0
s_xor_b64 exec, exec, s[0:1]
v_mul_u32_u24_e32 v1, 20, v0
…

int index = threadIdx.x;
if (index%2) {
    v[index] = index + 10;
} else {
    v[index] = index * 20;
}

SAVE EXEC
EXEC = threadIdx.x % 2

v_add_u32_e32 v1, 10, v0

¬ EXEC

v_mul_u32_u24_e32 v1, 20, v0

Restore EXEC

Use of v1
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Data Flow Analysis for AMDGPU Kernels

Capture In-Lane dataflow compactly

In-lane operations have the same data flow for all threads

Capture Cross-Lane & Predicated dataflow accurately

Vector instructions under predicated control flow

Permutation instructions can introduce dependencies between any 

two lanes of two vector registers

Need to track the dependencies between all lanes



Design and Implementation of Efficient 
AMDGPU Binary Instrumentation
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Instrumentation - Accessing Instrumentation Variables

Insert instructions to observe the behavior of the kernel
Insert instructions to bookkeep execution in instrumentation variables

Counters / Timestamps / Tracing

Data eventually needs to be available on the host 
Simplest: at the end of kernel execution. Effective for counters and 

timers.
More complex: periodically at initiative of the device. Allows counters 

and times to be viewed over time on the host. Allows trace buffers to 
be flushed when filled.

Perhaps more complex: periodically at initiative of the host. Allows 
interactive tools to poll current state of the instrumentation results.
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Instrumentation variables: per kernel launch
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Two regular scalar variables A and B

A B
Count cumulative information 
across waves

Requires synchronization or atomic 
operations as all waves write to the 
same locations
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A
3

B
3

Wave 3

A
2

B
2

Wave 2

A
1

B
1

Wave 1

Instrumentation variables: per wavefront
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Each wave has own instance of the 
scalar variable

No synchronization need

Measure per-wave information on 
device and aggregate if necessary



Dyninst Scalable Tools Workshop

Instrumentation variables: per thread
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Each thread has own its instance of 
the scalar variable (so, a vector per 
wave)

Computations on thread-level 
variables use vector operations

Only active threads read/write to 
their instances

A
3

B
3

Wave 3

A
1

B
1

A
2

B
2

Wave 2Wave 1

A
3,1

B
3,1

A
2,1

B
2,1

A
1,1

B
1,1

A
1,2

B
1,2

A
2,1

B
2,2

A
3,2

B
3,2

A
1,3

…
A

1,64

B
1,3

…
B

1,64

A
2,3

…
A

2,64

B
2,3

…
B

2,64

A
2,3

…
A

2,64

B
3,3

…
B

3,64
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Mechanics of offloading on the device (GPU)
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HOST DEVICE 

1

Allocate memory on device

2

Copy kernel arguments to device memory

4
Copy kernel results to host memory

3

Kernel launch
and SIMT execution
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Host-side implementation for Instrumentation Variables
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HOST DEVICE 

1

Allocate memory on device

2

Copy kernel arguments to device memory

4
Copy kernel results to host memory

Allocate additional memory for
instrumentation variables

Copy instrumentation variables to host

Initialize instrumentation variables on 
device to 0

3

Kernel launch
and SIMT execution

Pass instrumentation variables as
an additional argument

We modify kernel signature to take extra argument
The extra argument is the address for instrumentation variables
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  Example for accessing wave-level instrumentation variables

26

Device-side implementation for Instrumentation Variables

For each wave, calculate and store base address for its variables once in a register

Offsets for instances are same across waves

Therefore base + offset addressing will work at granularity of individual instances

A
3

B
3

Wave 3

A
2

B
2

Wave 2

A
1

B
1

Wave 1

Base Address of 
Instrumentation 
Data



Dyninst Scalable Tools Workshop

27

embed
fatbin

AMDGPU
Bins

(ELFs)

Fatbin
Metadata +

x86
Exec
(ELF)

AMDGPU
Bins

(ELFs)

AMDGPU
Bins

(ELFs)

extract
GPU
bins

repack

Instrumenting AMDGPU code objects
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x86
Exec
(ELF)

Dyninst 
Mutator

+ 
metadata

+ 
patch

metadata

AMDGPU
Bins

(ELFs)

Repacked Fatbin
Metadata +

AMDGPU
Bins

(ELFs)

Repacked Fatbin
Metadata +
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Current Implementation Status

Control Flow Analysis

Wavefront-level control flow analysis

Dataflow analysis

Experimental support for instruction semantics and symbolic execution based on 
AMD's machine readable instruction semantic specification

Instrumentation

Initial support for instrumentation at the granularity of a kernel launch

Support tools

Tools that work alongside the Dyninst mutator for AMDGPU

Alpha level of readiness
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Next Steps

Develop per-thread control flow analyses

Develop per-thread data flow analyses

Testing infrastructure for the instrumentation tools to make it ready for general use

Complete support for wave-level instrumentation

Extend instrumentation to thread level granularity
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Questions ?

hwu337@wisc.edu   ronak@cs.wisc.edu
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