
Binary Analysis and
Instrumentation for AMDGPU

in Dyninst
Hsuan-Heng Wu and Ronak Chauhan

Computer Sciences Department
University of Wisconsin-Madison

Scalable Tools Workshop
July 2025

Dyninst Scalable Tools Workshop

High-Level Goals

Boring Goal
Normal Dyninst binary analysis and instrumentation should work for AMDGPU

Interesting Goal
Adapt analysis and instrumentation for SIMD/SIMT architectures:

Abstract SIMD/SIMT control flow operations to a conventional CFG
Represent SIMD/SIMT data flow accurately and compactly
Efficient Fine Grained Instrumentation

 Fine grained:
Record information at wave or thread level granularity

 Efficient:
Synchronization-free instrumentation
Use control and data flow analysis to guide instrumentation

2

Dyninst Scalable Tools Workshop

Outline

Background

SIMT, wavefronts and execution mask

Predicated execution and predicated control flow

Binary Analysis of AMDGPU Kernels

Control flow analysis of GPU binaries

Dataflow analysis of GPU binaries

Design Efficient Instrumentation for GPU Applications

Leverage GPU architecture for efficient GPU instrumentation

3

Background

 4

Dyninst Scalable Tools Workshop

Background – SIMT, Wavefronts and Execution Mask

5

Threads grouped in wavefronts (warps) to execute in Single Instruction Multiple Data
(SIMD)

AMDGPU Kernels uses 64 threads in a wavefront
Each thread in a wavefront (lane)

Shares the same program counter
By default operates on their corresponding lane of the vector data
Can be disabled by clearing a bit in a execution mask register

Single Instruction Multiple Thread - Multiple wavefronts executing the same kernel

Dyninst Scalable Tools Workshop

6

SIMD Processor

Dyninst Scalable Tools Workshop

7

Multiple SIMD processors
result in SIMT

Dyninst Scalable Tools Workshop

8

Background – Vector Registers & Vector Instructions

v1[63] … v1[2] v1[1] v1[0]

v2[63] … v2[2] v2[1] v2[0]

v1[63]+v2[63] … v1[2]+v2[2] v1[1]+v2[1] v1[0]+v2[0]

1 … 1 1 1Execution Mask

v1

v2

v0

v_add_u32 v0, v1, v2

Dyninst Scalable Tools Workshop

Cross Lane Operations – Lane Shifting

9

v1[63] … v1[2] v1[1] v1[0]

v2[63] … v2[2] v2[1] v2[0]

unmodified v1[63]+v2[62] … v1[2]+v2[1] v1[1]+v2[0]

v_add_u32 v0, v1, v2 wave_shr:1 v1

v2

v0

1 … 1 1 1Execution Mask

Dyninst Scalable Tools Workshop

10

v1[63] … v1[2] v1[1] v1[0]

v2[63] … v2[2] v2[1] v2[0]

v0[63] … v1[2]+v2[2] v1[1]+v2[1] v0[0]

0 … 1 1 0Execution Mask

Background – Predicated Execution

v1

v2

v0

v_add_u32 v0, v1, v2

Dyninst Scalable Tools Workshop

Code in A

Code in B

11

threadIdx.x %2 = 1

threadIdx.x %2 = 0

Wavefront View CFG Per Thread View CFG

IF (threadIdx.x % 2)
{

 A; // odd threads

} ELSE {

 B; // even threads

}

SAVE EXEC
EXEC = threadIdx.x % 2

Code in A

¬ EXEC

Code in B

Restore EXEC

Binary Analysis for AMDGPU Kernels

 12

Dyninst Scalable Tools Workshop

Control Flow Analysis for AMDGPU Kernels

Analyzing control flow at the wavefront level is similar to that of CPU binary

Threads in a wavefront share the same PC

Control flow instructions are scalar

Analyzing per thread control flow is the interesting topic here

Control flow analysis enables data flow analysis

Under predicated control flow, threads can have different control flow

based on EXEC

IF-THEN-ELSE, DO-WHILE, SWITCH-CASE, SIMT Jump Table

Map these code constructs to conventional code constructs for

programmer's to understand the semantics of the binaries

13

Dyninst Scalable Tools Workshop

Code in A

Code in B

14

threadIdx.x %2 = 1

threadIdx.x %2 = 0

Wavefront View Per Thread View

IF (threadIdx.x % 2)
{

 A; // odd threads

} ELSE {

 B; // even threads

}

SAVE EXEC
EXEC = threadIdx.x % 2

Code in A

¬ EXEC

Code in B

Restore EXEC

Dyninst Scalable Tools Workshop

Control Flow Analysis for AMDGPU Kernels

Capture and represent per-thread control flow compactly

Threads with the same execution mask shares the same CFG

The exact value of an execution mask might be only known at runtime

Rely on symbolic analysis to determine the set of equivalence classes of
the symbolic execution mask value (when possible)

For each predicated control flow construct

Generate a per-thread control flow graph per equivalence classes of
the symbolic execution mask

In the cases where all threads have the same mask, this looks like a
traditional CFG

15

Dyninst Scalable Tools Workshop

Data Flow Analysis for AMDGPU Kernels

Data flow analysis needs to capture SIMD/SIMT data dependencies
accurately

Threads can be disabled by the execution mask

For each instruction

Only active threads contribute to the data flow

Vector registers can be partially updated by active threads

The DEF and USE set of instructions need to expand to
individual lanes of a vector register

16

Dyninst Scalable Tools Workshop

17

vcc = if(index%2)
s_and_saveexec_b64 s[0:1], vcc
v_add_u32_e32 v1, 10, v0
s_xor_b64 exec, exec, s[0:1]
v_mul_u32_u24_e32 v1, 20, v0
…

int index = threadIdx.x;
if (index%2) {
 v[index] = index + 10;
} else {
 v[index] = index * 20;
}

SAVE EXEC
EXEC = threadIdx.x % 2

v_add_u32_e32 v1, 10, v0

¬ EXEC

v_mul_u32_u24_e32 v1, 20, v0

Restore EXEC

Use of v1

Dyninst Scalable Tools Workshop

18

Data Flow Analysis for AMDGPU Kernels

Capture In-Lane dataflow compactly

In-lane operations have the same data flow for all threads

Capture Cross-Lane & Predicated dataflow accurately

Vector instructions under predicated control flow

Permutation instructions can introduce dependencies between any

two lanes of two vector registers

Need to track the dependencies between all lanes

Design and Implementation of Efficient
AMDGPU Binary Instrumentation

 19

Dyninst Scalable Tools Workshop

Instrumentation - Accessing Instrumentation Variables

Insert instructions to observe the behavior of the kernel
Insert instructions to bookkeep execution in instrumentation variables

Counters / Timestamps / Tracing

Data eventually needs to be available on the host
Simplest: at the end of kernel execution. Effective for counters and

timers.
More complex: periodically at initiative of the device. Allows counters

and times to be viewed over time on the host. Allows trace buffers to
be flushed when filled.

Perhaps more complex: periodically at initiative of the host. Allows
interactive tools to poll current state of the instrumentation results.

20

Dyninst Scalable Tools Workshop

Instrumentation variables: per kernel launch

21

Two regular scalar variables A and B

A B
Count cumulative information
across waves

Requires synchronization or atomic
operations as all waves write to the
same locations

Dyninst Scalable Tools Workshop

A
3

B
3

Wave 3

A
2

B
2

Wave 2

A
1

B
1

Wave 1

Instrumentation variables: per wavefront

22

Each wave has own instance of the
scalar variable

No synchronization need

Measure per-wave information on
device and aggregate if necessary

Dyninst Scalable Tools Workshop

Instrumentation variables: per thread

23

Each thread has own its instance of
the scalar variable (so, a vector per
wave)

Computations on thread-level
variables use vector operations

Only active threads read/write to
their instances

A
3

B
3

Wave 3

A
1

B
1

A
2

B
2

Wave 2Wave 1

A
3,1

B
3,1

A
2,1

B
2,1

A
1,1

B
1,1

A
1,2

B
1,2

A
2,1

B
2,2

A
3,2

B
3,2

A
1,3

…
A

1,64

B
1,3

…
B

1,64

A
2,3

…
A

2,64

B
2,3

…
B

2,64

A
2,3

…
A

2,64

B
3,3

…
B

3,64

Dyninst Scalable Tools Workshop

Mechanics of offloading on the device (GPU)

24

HOST DEVICE

1

Allocate memory on device

2

Copy kernel arguments to device memory

4
Copy kernel results to host memory

3

Kernel launch
and SIMT execution

Dyninst Scalable Tools Workshop

Host-side implementation for Instrumentation Variables

25

HOST DEVICE

1

Allocate memory on device

2

Copy kernel arguments to device memory

4
Copy kernel results to host memory

Allocate additional memory for
instrumentation variables

Copy instrumentation variables to host

Initialize instrumentation variables on
device to 0

3

Kernel launch
and SIMT execution

Pass instrumentation variables as
an additional argument

We modify kernel signature to take extra argument
The extra argument is the address for instrumentation variables

Dyninst Scalable Tools Workshop

 Example for accessing wave-level instrumentation variables

26

Device-side implementation for Instrumentation Variables

For each wave, calculate and store base address for its variables once in a register

Offsets for instances are same across waves

Therefore base + offset addressing will work at granularity of individual instances

A
3

B
3

Wave 3

A
2

B
2

Wave 2

A
1

B
1

Wave 1

Base Address of
Instrumentation
Data

Dyninst Scalable Tools Workshop

27

embed
fatbin

AMDGPU
Bins

(ELFs)

Fatbin
Metadata +

x86
Exec
(ELF)

AMDGPU
Bins

(ELFs)

AMDGPU
Bins

(ELFs)

extract
GPU
bins

repack

Instrumenting AMDGPU code objects

27

x86
Exec
(ELF)

Dyninst
Mutator

+
metadata

+
patch

metadata

AMDGPU
Bins

(ELFs)

Repacked Fatbin
Metadata +

AMDGPU
Bins

(ELFs)

Repacked Fatbin
Metadata +

Dyninst Scalable Tools Workshop

Current Implementation Status

Control Flow Analysis

Wavefront-level control flow analysis

Dataflow analysis

Experimental support for instruction semantics and symbolic execution based on
AMD's machine readable instruction semantic specification

Instrumentation

Initial support for instrumentation at the granularity of a kernel launch

Support tools

Tools that work alongside the Dyninst mutator for AMDGPU

Alpha level of readiness

28

Dyninst Scalable Tools Workshop

Next Steps

Develop per-thread control flow analyses

Develop per-thread data flow analyses

Testing infrastructure for the instrumentation tools to make it ready for general use

Complete support for wave-level instrumentation

Extend instrumentation to thread level granularity

29

Questions ?

hwu337@wisc.edu ronak@cs.wisc.edu

30

