
Modeling Compiler
Dependencies in Spack

2024 Scalable Tools Workshop

Todd Gamblin
Lawrence Livermore National Laboratory

LLNL-PRES-806064
2spack.io

Compilers in Spack are a node attribute, not a node

▪ Each node is assumed to have a
compiler
— Doesn’t make sense for most

python/ruby/etc. packages
— Extra meaningless metadata

▪ Can’t leverage virtual package
concept
— depends_on("c")
— depends_on("cxx@17")
— depends_on("fortran@95")

▪ “Compiler” metadata is just
name/version
— Doesn’t include all the needed

provenance
— Mixing of C/C++ and Fortran means

you have to lie

LLNL-PRES-806064
3spack.io

Why aren’t compilers proper dependencies?

They should be, but…

1. We wanted to mix compilers in one DAG
— Spack’s original dependency model required only one version of

a package in a DAG

2. We needed to auto-detect vendor compilers
— Often required for fastest builds
— Needed an expedient way to use what’s available

3. Modeling compiler compatibility is hard

compilers:
- compiler:
 spec: apple-clang@=15.0.0
 paths:
 cc: /usr/bin/clang
 cxx: /usr/bin/clang++
 f77: null
 fc: null
 flags: {}
 operating_system: sonoma
 target: aarch64
 modules: []
 environment: {}
 extra_rpaths: []
- compiler:
 spec: gcc@=13.2.0
 paths:
 cc: /opt/homebrew/bin/gcc-13
 cxx: /opt/homebrew/bin/g++-13
 f77: /opt/homebrew/bin/gfortran-13
 fc: /opt/homebrew/bin/gfortran-13
 flags: {}
 operating_system: sonoma
 target: aarch64
 modules: []
 environment: {}
 extra_rpaths: []

compilers.yaml

> spack compilers
==> Available compilers
-- apple-clang sonoma-aarch64 ----------------------
apple-clang@15.0.0

-- gcc sonoma-aarch64 ------------------------------
gcc@13.2.0

LLNL-PRES-806064
4spack.io

3 kinds of dependencies in Spack

Approximate meanings:

▪ build dependency
— program needed at build time
— added to PATH at build time

▪ link dependency
— library needed at runtime
— RPATHs are added to dependents

▪ run dependency
— program needed at runtime
— added to PATH at runtime

1

2 5

3 4

B

B

76

L

R

8

L

BL

B: build L: link R: run

1

5

7

8

Transitive link/run deps

needed at runtime

2

3 4 6

Build deps of runtime graph

needed at build time

LLNL-PRES-806064
5spack.io

Unification can cause issues

▪ Only one configuration per package
allowed in the DAG

— Ensures ABI compatibility

— Too restrictive

▪ In the example py-numpy needs to use
py-cython@0.29 as a build tool

▪ That forces us to use an old py-gevent,
because newer versions of py-gevent
depend on py-cython@3.0 or greater

gptune

py-cython@0.29

py-gevent@1.5 py-numpy

RR

B B

LLNL-PRES-806064
6spack.io

We added a notion of unification sets to our solve

▪ The constraint on build dependencies
can be relaxed, without compromising
ABI

▪ Single node constraint now only
enforced within unification sets

— These are the set of nodes used
together at runtime

▪ Now we can have two py-cython nodes

— This allows us to use the latest version
of py-gevent

gptune

py-gevent@23.7 py-numpy

py-cython@0.29py-cython@3.0

Unification
Set

RR

B B

LLNL-PRES-806064
7spack.io

We reworked the solver to create “duplicate” nodes when needed

node(DependencyName)
 :- dependency_holds(PkgName, DependencyName)

Original: deduce a single dependency node by name:

Reworked to choose from duplicate nodes:

Convert node identifier

from name to (id, name)

1 {
 depends_on(PkgNode, node(0..N-1, DepNode), Type)
 : max_dupes(DepNode, N)
} 1
 :- dependency_holds(PkgNode, DepNode).

Limit number of duplicates

LLNL-PRES-806064
8spack.io

First try at allowing duplicates in a single solve

Increased solve times by

>> 2x in some cases

LLNL-PRES-806064
9spack.io

It turns out that cycle detection in the solver is expensive

path(A, B) :- depends_on(A, B).
path(A, C) :- path(A, B), depends_on(B, C).

:- path(A, B), path(B, A). % this says "no cycles"

▪ Has to maintain path() predicate representing paths between nodes

▪ Cycles are actually rare in solutions

— Switched to post-processing for cycle detection, only pay if there are cycles

— Later found a #edge feature in clingo – nearly free cycle detection integrated with solver

▪ Similar issue arose for variant propagation in graph

— Fixed by reworking variant propagation not to track paths

50%+ improvement

in solve time

LLNL-PRES-806064
10spack.io

Fully general unification sets can be expensive

▪ Unification set creation was originally
recursive for every build dependency

— Blows up when grounding

▪ Mitigation:

— For now, only create new sets for explicitly
marked build tools

— Transitive build dependencies that are not
from marked build tools go into a single
common unification set

— Eliminate blowup by bounding recursion

▪ For full generality, need better heuristics
to split judiciously

gptune

py-gevent@23.7 py-numpy

py-cython@0.29py-cython@3.0

RR

B B

LLNL-PRES-806064
11spack.io

Solve Time Optimizations

LLNL-PRES-806064
12spack.io

It was not trivial to come up with this model

▪ In addition to this “coupled” method, we
tried an iterative version with multiple solves

▪ Multiple solves had some disadvantages:

— Slower due to overhead of multiple solves

— Not coupled, so feedback from solve to solve
was awkward

— Packagers needed to “help” the solver
(impractical)

▪ Coupling is important for compilers b/c build
environment can affect run environment

LLNL-PRES-806064
13spack.io

Mixed build dependencies enable us to
model compilers as dependencies

▪ Suppose we build a simple C++ package with
the oneapi compiler
— Model it as a build dependency
— Now we’re allowed to mix compilers

▪ Build dependencies enable us to model
oenapi’s dependency on gcc
— needs gcc to get a libstdc++
— Wasn’t represented with node attribute model

▪ Suppose we also need to link against another
package that uses gcc
— How do we know the runtime libraries are

compatible?

How do we know these

will be compatible?

2

gcc

B

L

oneapi

gcc

B

R

1

LLNL-PRES-806064
14spack.io

What is a compiler anyway?

▪ A compiler is a build dependency

▪ A compiler also imposes link dependencies on its build-dependent
— Compilers actually have hidden dependencies

▪ Runtime libraries have the same runtime semantics as regular libraries
— Loaded by the same ld.so
— We need to model them like regular libraries

LLNL-PRES-806064
15spack.io

New compiler dependency model

▪ Model runtime libraries as link dependencies

▪ Unification set enforces compatibility
— For the observant: it’s a little more subtle
— We relax this a bit to allow dependents to use a

newer libstdc++ than dependencies (v0.22.1)

▪ This model gets us most of what we want

▪ Problems:
— Do 1 and 2 need to know they depend on libstdc++?
— Isn’t that just a compiler implementation detail?

• e.g., there is libc++, too

libstdc++

L
L

1

oneapi

gcc

B

R

2

gcc

B

L

Unification

Set

LLNL-PRES-806064
16spack.io

Highlights:
1. Compiler runtime dependencies

• gcc-runtime, intel-oneapi-runtime, libgfortran, libc

• OS compatibility on linux now uses libc version, not OS tag

2. Improved spack find UI for Environments
3. Improved command-line string quoting
4. Revert default spack install behavior to --reuse

5. More control over reused specs
6. New redistribute() directive
7. New conflict: and prefer: syntax for package preferences
8. include_concrete: in environments
9. python-venv isolation

Spack v0.22.0 was released in May

github.com/spack/spack

Full release notes:
https://github.com/spack/spack/releases/tag/v0.22.0

LLNL-PRES-806064
17spack.io

We’ve made a lot of progress on compiler dependencies

▪ Compiler runtime libraries represented in the graph

— C++, Fortran runtimes

▪ libc is now represented in dependency graphs on Linux

— No more need to rely on OS tag for compatibility information

▪ Reuse binaries without their compiler needing to be configured
locally

▪ Improved buildcache hit rate using libraries for compatibility

LLNL-PRES-806064
18spack.io

Packages now depend on languages

▪ Languages are almost virtuals

— HDF5 package depends on cxx and fortran

▪ Handled specially internally

— Solver has a bit of hard-coding for
language virtuals

— When compilers are proper nodes we’ll
make them regular virtuals

LLNL-PRES-806064
19spack.io

Compilers now model their own runtimes

▪ Gcc package provides cxx virtual

— Can use this for openmp as well

— Done for intel-oneapi and gcc

▪ runtime_constraints method

— adds global rules to solver

— pkg object works much like rest of Spack
DSL, but allows “*” for “any”

▪ Right separation of concerns

— Compiler knows about own runtimes and
can force dependencies

— Hidden behind a virtual

— Packages only depend on virtual

▪ Any package could be a compiler now

— Likely useful for tools to inject libs

LLNL-PRES-806064
20spack.io

We’ve (finally) modeled libc as a dependency

▪ libc is a virtual

— glibc and musl packages are providers

— (nearly) every graph has libc in it, via
the compiler

— Can be external or built by Spack

▪ We are not building libc for every install

— Automatically detect system libc version

— Add a node to the graph to be used for
binary compatibility

▪ No longer using OS tags for buildcaches

— Now use libc for this

— many more buildcache hits

LLNL-PRES-806064
21spack.io

Libc modeling makes for a much better buildcache
experience

▪ Currently on develop (emacs 100% from binary):

LLNL-PRES-806064
22spack.io

Backward-compatible syntax is a bit tricky

▪ We generalized semantics for ^ and %:

^zlib transitive link/run dependency on zlib

%gcc direct dependency on gcc

▪ % can now be used for more than compilers

— e.g., %cmake@3.28 for cmake versions

▪ Historically, only ^ starts a new associative context

— Cannot make % behave exactly like ^

— Users frequently write @version %compiler@version +variants

▪ Introducing {} to dependency specs so we can add variants

— Also helps with ambiguity introduced by node splitting

— “the c compiler used to build the gcc used to build root”

root +foo ^dep @2.0 %gcc@12 +bar

@2.0 and +bar associate with dep

root %{gcc %{c}}

root +foo ̂ dep @2.0 %{gcc@12 +bar}

Now +bar associates with gcc

LLNL-PRES-806064
23spack.io

What’s left

1. Remove the old concretizer (finally done)

— Bootstrap now handled with some simple JSON templates for clingo

2. Semantics of % will change

— ^gcc will mean “transitive link or run dependency on zlib”

— %gcc will mean “direct dependency on gcc”

3. compilers.yaml → packages.yaml

4. Make compilers into nodes

LLNL-PRES-806064
24spack.io

1. Finish compiler dependencies
— Compilers will appear as build dependencies
— All special compiler logic generified for any build dependency
— Enable bootstrapping compilers from buildcache
— Continue to flesh out low-level compiler runtime libraries

2. Harden public build caches and make them more broadly compatible

3. Enable bare-metal MPI/CUDA/ROCm installations

4. Make the build cache on by default; build only what we need from source

5. Automatic Python package generation

6. Continue to improve Windows support

7. Speed improvements for concretization and metadata management

Roadmap for this year

Lots of exciting work ahead!

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or

implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights . Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,

LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States govern ment
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

LLNL-PRES-806064
26spack.io

The concretizer includes information from
packages, configuration, and CLI

• new versions

• new dependencies

• new constraints

package.py repository

local preferences config
packages.yaml

yaml

local environment config
spack.yaml

yaml

admins,

users

users

Command line constraints
spack install hdf5@1.12.0 +debug

Contributors

default config
packages.yaml

yamlspack

developers

users

concretizer

Concrete spec is

fully constrained

and can be built.

Dependency solving

is NP-hard

LLNL-PRES-806064
27spack.io

▪ Main logic program is:
— ~250 rules
— 20 optimization criteria
— 933 lines of ASP code

▪ Problem instances can vary quite a bit
— Common dependencies get us some

magic numbers
— gmake’s optional dependency on guile

makes most solves consider at least 527
packages

— gnuconfig is notably very simple ☺

Some stats on problem sizes

Package Possible

dependencies

Facts

gnuconfig 1 150

zlib 527 30,095

gmake 527 30,160

openmpi 527 109,021

qt 527 109,029

trilinos 694 224,142

root 699 146,372

mfem 714 273,078

r-condop 774 142,212

warpx 819 319,374

exawind 820 322,535

LLNL-PRES-806064
28spack.io

▪ Was originally a greedy, custom Python algorithm

▪ Answer Set Programming is a declarative programming paradigm
— Looks like Prolog
— Built around modern CDCL SAT solver techniques
— Designed for combinatorial search problems

▪ ASP program has 2 parts:
1. Large list of facts generated from package recipes (problem instance)

• 60k+ facts is typical – includes dependencies, options, etc.
2. Small logic program (~700 lines of ASP code)

▪ Algorithm (the part we write) is conceptually simpler:
— Generate facts for all possible dependencies
— Send facts and our logic program to the solver
— Rebuild a DAG from the results

▪ We’re using Clingo, the Potassco grounder/solver package

We reimplemented Spack’s concretizer using
Answer Set Programming

Some facts for HDF5 package

LLNL-PRES-806064
29spack.io

Spack’s concretizer is implemented using
Answer Set Programming (ASP)

node("mpi")
node("hdf5").
depends_on("hdf5", "mpi").

node("lammps").
node("cuda").
variant_value("lammps", "cuda", "True").
depends_on("lammps", "cuda").

lammps

cuda

+cuda

Facts describe the graph

node(Dependency) :- node(Package), depends_on(Package, Dependency).

First-order rules (with variables) describe how to resolve nodes and metadata

ASP looks like Prolog but is converted to SAT with optimization

Ground

Rule

LLNL-PRES-806064
30spack.io

Grounding converts a first-order logic program into a propositional
logic program, which can be solved for stable models

a

cb

d

a

cb

d

b

d

Answer 1: Only node(b) is true

Answer 2: Both node(a) and node(b) are true

LLNL-PRES-806064
31spack.io

ASP searches for stable models of the input program

▪ Stable models are also called answer sets

▪ A stable model (loosely) is a set of true atoms that can be
deduced from the inputs, where every rule is idempotent.
— Similar to fixpoints

— Put more simply: a set of atoms where all your rules are true!

▪ Unlike Prolog:

— Stable models contain everything that can be derived (vs. just querying values)

— Good ways to do optimization to select the “best” stable model

— ASP is guaranteed to complete!

LLNL-PRES-806064
32spack.io

Big things we’ve wanted for 1.0 are:
— New concretizer
— production CI
— production public build cache
— Compilers as dependencies
— Buildcache hardening
— Stable package API

• Enables separate package repository

We are getting very close!

When would we go to “Version 1.0”?

Done!

Aiming for November

Aiming for June

	Slide 1
	Slide 2: Compilers in Spack are a node attribute, not a node
	Slide 3: Why aren’t compilers proper dependencies?
	Slide 4: 3 kinds of dependencies in Spack
	Slide 5: Unification can cause issues
	Slide 6: We added a notion of unification sets to our solve
	Slide 7: We reworked the solver to create “duplicate” nodes when needed
	Slide 8: First try at allowing duplicates in a single solve
	Slide 9: It turns out that cycle detection in the solver is expensive
	Slide 10: Fully general unification sets can be expensive
	Slide 11: Optimizations: Solve Time
	Slide 12: It was not trivial to come up with this model
	Slide 13: Mixed build dependencies enable us to model compilers as dependencies
	Slide 14: What is a compiler anyway?
	Slide 15: New compiler dependency model
	Slide 16: Spack v0.22.0 was released in May
	Slide 17: We’ve made a lot of progress on compiler dependencies
	Slide 18: Packages now depend on languages
	Slide 19: Compilers now model their own runtimes
	Slide 20: We’ve (finally) modeled libc as a dependency
	Slide 21: Libc modeling makes for a much better buildcache experience
	Slide 22: Backward-compatible syntax is a bit tricky
	Slide 23: What’s left
	Slide 24: Roadmap for this year
	Slide 25
	Slide 26: The concretizer includes information from packages, configuration, and CLI
	Slide 27: Some stats on problem sizes
	Slide 28: We reimplemented Spack’s concretizer using Answer Set Programming
	Slide 29: Spack’s concretizer is implemented using Answer Set Programming (ASP)
	Slide 30: Grounding converts a first-order logic program into a propositional logic program, which can be solved for stable models
	Slide 31: ASP searches for stable models of the input program
	Slide 32: When would we go to “Version 1.0”?

