
GPU Compute Kernel Instrumentation and
Performance Analysis for HPC

Low-overhead Trace Collection on GPU

Sébastien Darche <sebastien.darche at polymtl.ca>

August 12th, 2024

Dorsal - Polytechnique Montréal

1



Current projects at DORSAL lab

• The Distributed Open Reliable Systems Analysis Lab

• Strong focus on trace collection and performance analysis

• LTTng, Trace Compass

2



Tooling for HPC

• Score-P traces support through CTF conversion, ROCm runtime
instrumentation

• Multiple analyses available
• Critical path for linux kernel traces
• Hardware performance counters through Score-P
• Call stack among ranks, statistics
• Flame graph
• Communicators, bandwidth
• Critical path for MPI
• . . .

• Scalability of Trace Compass through distributed analyses (ongoing
work)

• Current work on kernel instrumentation

3



GPU Tracing with hip-analyzer

• Few tools for tracing on GPUs, and often at the cost of very high
performance impact (at minima 10× and up to 120×) [1] [2]

• GPU Tracing is unwieldy : clumsy memory management, massive
parallelism (concurrency control, high throughput)

• Separate buffer allocation and event collection using two kernel runs

• LLVM IR instrumentation

4



What’s new ?

• Improved instrumentation through asm constructors & reg.
reservation

• Improved results over state-of-the-art methods

• Successfully instrument (and run) all tested kernels

• Method and results published in ACM TOPC [3]

5



Results

• Instrumentation tested against the Rodinia benchmark [4]

Mean overhead Median overhead
Counters instr. (kernel) 2.00× 1.67×
Tracing instr. (kernel) 1.50× 1.29×
Program execution time 1.60× 1.26×

• Good improvements over state of the art

• Correlation between kernel complexity and overhead

6



Limitations

• Two kernel runs problematic for a number of reasons
• Run time cost
• Memory requirements
• Non-deterministic kernels

• Invasive instrumentation

7



Dynamic Tracing

• Solution would be to adapt traditional tracing methods to highly
parallel GPU applications

• Many setbacks
• Memory requirements
• Concurrency & perf. impacts
• Data movement (host/device) and consistency

8



Tracing

• Ring buffer based

• Usually one per CPU core

• A collection thread runs asynchronously to empty the buffers as they
are being filled by the traced application

ptr_begin

ptr_curr

9



How about on GPUs ?

• Closest equivalent to cores would be Compute Units (CU/SM)

• Shared L1 cache, execute one wavefront at a time

• ... but way more CUs on a GPU

• Memory consistency is ensured at kernel bounds

Figure 1: AMD GCN Compute unit 1

1Reproduced from AMD GPU Hardware Basics, 2019 Frontier Application Readiness Kick-off Workshop

10



Challenging Scale

Figure 2: AMD CDNA1 Architecture block diagram 2

2Reproduced from Introducing AMD CDNA Architecture, 2020 AMD Whitepaper

11



Reducing concurrent interactions

• Allocate a "chunk" of the buffer

• Implementation is more tricky (... still in asm)

• More fragmentation

• Can be combined with the previous approach

ptr_begin

ptr_curr

12



Preliminary results

• Per-event allocation works best for smaller kernels (less bookkeeping)

• Chunk allocation is the most viable option for long-running kernels
(if you can amortize the initial allocation cost)

• The original hip-analyzer remains a good option for simpler kernels
(as long as memory / deterministic execution is not an issue)

• Overall, the performance remains good (< 3×)

13



Performance

Figure 3: Event cost (time per event) without and with CU data locality on the
device

14



// TODO

• Identify trends among kernels to recommend best tracing method
• Expected number of events
• Register usage
• Launch grid size
• Kernel run time
• ...

• Better instrumentation / compiler integration
• Static / dynamic instrumentation tools
• Backend implementation

• Explore async. event collection on APUs (MI300 ?)

15



Conclusion and future work

• Encouraging results and feedback

• Runtime event collector implemented & working
• Currently running experiments on different kernels

• Next step is working on better instrumentation

• Available freely on Github, feedback and/or use cases are more than
welcome

16



Sources - Q&A

Q&A

References

[1] D. Shen, S. L. Song, A. Li, and X. Liu, “Cudaadvisor: Llvm-based
runtime profiling for modern gpus,” in Proceedings of the 2018
International Symposium on Code Generation and Optimization, 2018.

[2] Y. Arafa, A.-H. Badawy, A. ElWazir, et al., “Hybrid, scalable,
trace-driven performance modeling of gpgpus,” in Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2021, pp. 1–15.

[3] S. Darche and M. R. Dagenais, “Low-overhead trace collection
and profiling on gpu compute kernels,” ACM Transactions on
Parallel Computing, vol. 11, no. 2, pp. 1–24, 2024.

[4] S. Che, M. Boyer, J. Meng, et al., “Rodinia: A benchmark suite
for heterogeneous computing,” in 2009 IEEE International
Symposium on Workload Characterization (IISWC), 2009, pp. 44–54.

17


	References

