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Current projects at DORSAL lab

• The Distributed Open Reliable Systems Analysis Lab

• Strong focus on trace collection and performance analysis

• LTTng, Trace Compass
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Tooling for HPC

• Score-P traces support through CTF conversion, ROCm runtime
instrumentation

• Multiple analyses available
• Critical path for linux kernel traces
• Hardware performance counters through Score-P
• Call stack among ranks, statistics
• Flame graph
• Communicators, bandwidth
• Critical path for MPI
• . . .

• Scalability of Trace Compass through distributed analyses (ongoing
work)

• Current work on kernel instrumentation
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GPU Tracing with hip-analyzer

• Few tools for tracing on GPUs, and often at the cost of very high
performance impact (at minima 10× and up to 120×) [1] [2]

• GPU Tracing is unwieldy : clumsy memory management, massive
parallelism (concurrency control, high throughput)

• Separate buffer allocation and event collection using two kernel runs

• LLVM IR instrumentation
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What’s new ?

• Improved instrumentation through asm constructors & reg.
reservation

• Improved results over state-of-the-art methods

• Successfully instrument (and run) all tested kernels

• Method and results published in ACM TOPC [3]
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Results

• Instrumentation tested against the Rodinia benchmark [4]

Mean overhead Median overhead
Counters instr. (kernel) 2.00× 1.67×
Tracing instr. (kernel) 1.50× 1.29×
Program execution time 1.60× 1.26×

• Good improvements over state of the art

• Correlation between kernel complexity and overhead
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Limitations

• Two kernel runs problematic for a number of reasons
• Run time cost
• Memory requirements
• Non-deterministic kernels

• Invasive instrumentation

7



Dynamic Tracing

• Solution would be to adapt traditional tracing methods to highly
parallel GPU applications

• Many setbacks
• Memory requirements
• Concurrency & perf. impacts
• Data movement (host/device) and consistency
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Tracing

• Ring buffer based

• Usually one per CPU core

• A collection thread runs asynchronously to empty the buffers as they
are being filled by the traced application

ptr_begin

ptr_curr
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How about on GPUs ?

• Closest equivalent to cores would be Compute Units (CU/SM)

• Shared L1 cache, execute one wavefront at a time

• ... but way more CUs on a GPU

• Memory consistency is ensured at kernel bounds

Figure 1: AMD GCN Compute unit 1

1Reproduced from AMD GPU Hardware Basics, 2019 Frontier Application Readiness Kick-off Workshop
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Challenging Scale

Figure 2: AMD CDNA1 Architecture block diagram 2

2Reproduced from Introducing AMD CDNA Architecture, 2020 AMD Whitepaper
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Reducing concurrent interactions

• Allocate a "chunk" of the buffer

• Implementation is more tricky (... still in asm)

• More fragmentation

• Can be combined with the previous approach

ptr_begin

ptr_curr
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Preliminary results

• Per-event allocation works best for smaller kernels (less bookkeeping)

• Chunk allocation is the most viable option for long-running kernels
(if you can amortize the initial allocation cost)

• The original hip-analyzer remains a good option for simpler kernels
(as long as memory / deterministic execution is not an issue)

• Overall, the performance remains good (< 3×)
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Performance

Figure 3: Event cost (time per event) without and with CU data locality on the
device
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// TODO

• Identify trends among kernels to recommend best tracing method
• Expected number of events
• Register usage
• Launch grid size
• Kernel run time
• ...

• Better instrumentation / compiler integration
• Static / dynamic instrumentation tools
• Backend implementation

• Explore async. event collection on APUs (MI300 ?)
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Conclusion and future work

• Encouraging results and feedback

• Runtime event collector implemented & working
• Currently running experiments on different kernels

• Next step is working on better instrumentation

• Available freely on Github, feedback and/or use cases are more than
welcome
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Sources - Q&A

Q&A
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