GPU Compute Kernel Instrumentation and Performance Analysis for HPC

Low-overhead Trace Collection on GPU

Sébastien Darche <sebastien.darche at polymtl.ca> August 12th, 2024

Dorsal - Polytechnique Montréal

- The Distributed Open Reliable Systems Analysis Lab
- Strong focus on trace collection and performance analysis
- LTTng, Trace Compass

Tooling for HPC

- Score-P traces support through CTF conversion, ROCm runtime instrumentation
- Multiple analyses available
 - Critical path for linux kernel traces
 - Hardware performance counters through Score-P
 - Call stack among ranks, statistics
 - Flame graph
 - Communicators, bandwidth
 - Critical path for MPI
 - ...
- Scalability of Trace Compass through distributed analyses (ongoing work)
- Current work on kernel instrumentation

- Few tools for tracing on GPUs, and often at the cost of very high performance impact (at minima $10 \times$ and up to $120 \times$) [1] [2]
- GPU Tracing is unwieldy : clumsy memory management, massive parallelism (concurrency control, high throughput)
- Separate buffer allocation and event collection using two kernel runs
- LLVM IR instrumentation

- Improved instrumentation through asm constructors & reg. reservation
- Improved results over state-of-the-art methods
- Successfully instrument (and run) all tested kernels
- Method and results published in ACM TOPC [3]

• Instrumentation tested against the Rodinia benchmark [4]

	Mean overhead	Median overhead
Counters instr. (kernel)	2.00×	1.67 imes
Tracing instr. (kernel)	1.50 imes	1.29 imes
Program execution time	1.60 imes	1.26 imes

- Good improvements over state of the art
- Correlation between kernel complexity and overhead

- Two kernel runs problematic for a number of reasons
 - Run time cost
 - Memory requirements
 - Non-deterministic kernels
- Invasive instrumentation

- Solution would be to adapt traditional tracing methods to highly parallel GPU applications
- Many setbacks
 - Memory requirements
 - Concurrency & perf. impacts
 - Data movement (host/device) and consistency

Tracing

- Ring buffer based
- Usually one per CPU core
- A collection thread runs asynchronously to empty the buffers as they are being filled by the traced application

- Closest equivalent to cores would be Compute Units (CU/SM)
- Shared L1 cache, execute one wavefront at a time
- ... but way more CUs on a GPU
- Memory consistency is ensured at kernel bounds

Figure 1: AMD GCN Compute unit ¹

¹Reproduced from AMD GPU Hardware Basics, 2019 Frontier Application Readiness Kick-off Workshop

Challenging Scale

Figure 2: AMD CDNA1 Architecture block diagram ²

²Reproduced from Introducing AMD CDNA Architecture, 2020 AMD Whitepaper

Reducing concurrent interactions

- Allocate a "chunk" of the buffer
- Implementation is more tricky (... still in asm)
- More fragmentation
- Can be combined with the previous approach

- Per-event allocation works best for smaller kernels (less bookkeeping)
- Chunk allocation is the most viable option for long-running kernels (if you can amortize the initial allocation cost)
- The original hip-analyzer remains a good option for simpler kernels (as long as memory / deterministic execution is not an issue)
- Overall, the performance remains good (< $3 \times$)

Performance

Figure 3: Event cost (time per event) without and with CU data locality on the device $\label{eq:cost}$

// TODO

- Identify trends among kernels to recommend best tracing method
 - Expected number of events
 - Register usage
 - Launch grid size
 - Kernel run time
 - ...
- Better instrumentation / compiler integration
 - Static / dynamic instrumentation tools
 - Backend implementation
- Explore async. event collection on APUs (MI300 ?)

Conclusion and future work

- Encouraging results and feedback
- Runtime event collector implemented & working
 - Currently running experiments on different kernels
- Next step is working on better instrumentation
- Available freely on Github, feedback and/or use cases are more than welcome

Q&A

References

- [1] D. Shen, S. L. Song, A. Li, and X. Liu, "Cudaadvisor: Llvm-based runtime profiling for modern gpus," in *Proceedings of the 2018 International Symposium on Code Generation and Optimization*, 2018.
- [2] Y. Arafa, A.-H. Badawy, A. ElWazir, et al., "Hybrid, scalable, trace-driven performance modeling of gpgpus," in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2021, pp. 1–15.
- [3] S. Darche and M. R. Dagenais, **"Low-overhead trace collection** and profiling on gpu compute kernels," *ACM Transactions on Parallel Computing*, vol. 11, no. 2, pp. 1–24, 2024.
- [4] S. Che, M. Boyer, J. Meng, et al., "Rodinia: A benchmark suite for heterogeneous computing," in 2009 IEEE International Symposium on Workload Characterization (IISWC), 2009, pp. 44–54.