
Triton for HPC
Scalable Tools Workshop 2024

https://bit.ly/46JJlrD



Triton Introduction

- Open-source Python-like language
- Compiles Triton language code into CUDA binaries
- Cross-Platform. Supports NV, AMD and Intel GPUs
- Enables researchers to write high efficient GPU code, without 

any CUDA experience
- Most of which are on par with what an expert produces



Pros for using Triton in HPC

- Triton language is more like a “high-performance Python”
- Compared to C++/Fortran, the syntax is similar to Python

- Saving Programmer’s effort
- Faster development, faster iteration

- The performance of Triton Kernels achieves ~80% of CUDA counterparts

- Triton can be used in some libraries not well supported by 
present libraries.

- e.g. matrix operations like solving eigenvalues and jacobies



Cons and Difficulties - 1

- Data format issues.
- Triton performs well in low precision data formats, but not in high 

precision ones.
- E.g. fp16, fp8 and even fp4 is what Triton is good at.
- However, most HPC applications requires at least the precision of 

fp64.
- Triton doesn’t support fp64 for now.
- Although it is possible to develop fp64 support for Triton, 

performance tuning is needed.



Cons and Difficulties - 2

- Tech Depts
- Most of HPC libraries were written in C++/Fortran

- C++ HPC libraries were written by professional library programmers
- Computational scientists only need to focus the usage of these 

libraries. They don’t care about the development cost
- Fortran language is more similar to mathematical language used in 

matrix computation
- Fortran language and BLAS have been debugged for 20+ years.

- Not necessary for a Triton refactor.
- Python is mostly used for data loading



Potential Application

- Sparse Tensor Operations
- AMR(Adaptive Mesh Refinement): 3D space -> 3D cubes
- Calculating vortex in turbulence

- GPU outperforms CPU in fp64 computation.
- Thus, GPU programming is inevitable
- Which is Triton really good at



Attendees

Ben Woodard

Hao Wu

Keren Zhou

William Jalby

Yuning Xia


