
Designs/options for feedback from tools to improve 
performance etc. & System monitoring / utilization - 

integration of mapping, validation, visualization & How 
can more of our tooling become more interoperable?

https://tinyurl.com/stw-monitoring 

https://tinyurl.com/stw-monitoring


<TL/DR> (outbrief)

Automatic performance optimization is hard, with or without feedback (MAQAO is an 
example tool that addresses it)

Efforts have been made to save time, energy - but are one-off solutions integrated into 
schedulers

Elastic applications could take advantage of elastic schedulers - can we find a prototype 
example to work with on HPC? (cloud example?) (workflow example?)

Commit to exploring integration between high level management and low level 
performance measurement/analysis (match up with at least 1 other tool)

Tool interoperability/outreach efforts exist - VI-HPS in Europe, for example

STW move to 2x per year? Non USA location?



Feedback

Hard problem - how to go from measured performance data to information that is actionable

Challenge - complexity of components, expert knowledge

- Intel top-down model
- AMD top-down model
- IBM CPI-stack model
- Others?
- I/O bottlenecks - Darshan diagnostic/recommendations - what if you get 

bad/broken/misconfigured hardware (bad OST)
- Distinguish between facility failure vs user problem
- What is the baseline? Performance expectations?



Diagnostic distinction

Venn diagram:

● Operator understandable metrics
● User understandable metrics
● Need some crossover to interpret each other
● Alarms / tripwires?

○ Node failures result in pulling the node from node queues - opportunity to use a partially 
disabled node

○ Would users know what their jobs are going to exploit/require?
○ Specialized queues for jobs that are OK with less-than-ideal nodes

● Need the hooks in system software to integrate feedback from jobs



Erlangen example

● Analysis of jobs while they are running, sending metrics every X seconds, 
energy manager kicks in every X minutes, manages power for currently 
running jobs

● Outcomes are stored in an event database
● Power changes are reported to a web interface
● Race to idle is still the best for energy saving (faster is better)



How to leverage performance research

● Scheduling decisions?
● Deep tooling decisions?
● Carrots & Sticks

○ Bonus core hours for opting-in
● More flexibility for reconfiguration from users due to Cloud influence
● User feedback vs automated reconfiguration
● Smart runtime system could collect integrated information from disparate 

sources and utilize “/feedback” filesystem - synthesize information from 
sources and make decisions about control (separation of concerns)

○ Design & protocols needed
● Alternate - stack redesign with more communication, client/services



Reporting Progress

Application can report “progress” to the system

Progress metric can be used analytically to ?

● Not making progress - kill the job
● Guess at wall clock time, could extend job enough to “finish”
● Identify “imbalances” and address them
● Identify instabilities and terminate early
● Computational steering at the system level
● Ample opportunities for abuse - how to prevent
● How to encourage users to opt-in - priority queues to volunteers
● Domain knowledge is needed
● How much co-scheduling is allowed/done? Shared node access



Elasticity

● Will it ever be allowed?
● MPI Sessions
● Designed to be well balanced, static configuration
● Workflows, campaigns, AI, - all new opportunities
● Game theory needed to get users to cooperate - how to incentivize?
● Chicken & egg problem - applications aren’t elastic because systems aren’t 

elastic, because…
● Need example cases that could experiment with

○ Killer workflow & monitoring information necessary to make change



Separation of concerns

LDMS - High level information, non intrusive, actionable?

Performance tools - low level information, somewhat intrusive, actionable?

Opportunities for interaction / data sharing

● Performance tools reading from system data clients
● System daemons reading from performance tools
● How to synthesize all this information to provide an expert recommendation?

○ Drishti - recommender system for Darshan trace logs (I/O only)
○ Proton - recommendation based on GPU kernel counters
○ Stalls & stall causes



Action items!

● Identify “killer app” workflow(?) to allow for elasticity in operations 
● Combining system data with performance tool data

○ LDMS/Kafka + Kokkos/Caliper/others?
○ Zerosum + LDMS/other client as data source
○ Data should/could flow both directions
○ Data reduction necessary? Statistical sampling? Summary metrics?
○ Combining in databases, not just on node

● What information is useful / actionable?
● What’s the useful life cycle for this data?
● Semi-annual meeting in non-USA location?



MAQAO examples

Take performance measurement, combine with expert knowledge, report to user in 
HUMAN readable form what the actionable changes are recommended AND the 
expected benefit.

(source code-level changes)

Important point - diagnostics are reported at source code level, and human friendly

Additional info: MAQAO overview, Code App Optimization

https://drive.google.com/file/d/1-g_p-3mGC5gk27n2Jw-n7FmznmfxVoLu/view?usp=share_link
https://drive.google.com/file/d/1-fRot9NV-a4liTxFYVpx9r1xNVuNGbes/view?usp=share_link


Tool interoperability

Common schema(s) or “discoverable” formats?

Metadata collection and usage?

ADIAK, Machinestate

VI-HPS.org – https://vi-hps.org 

Every tool promises to learn about / collaborate with another tool

https://vi-hps.org

