
CPU-GPU Communication 
for tools

https://bit.ly/swt-cpu-gpu



Problem space

● Data has to get back to the CPU at some point
● Several models

○ Wait for the end of the kernel
○ Triggering from the CPU side periodically
○ Trace buffers are complete, have to empty them

● Data format
● What’s the synchronization?
● AMD has interest(?) for a library(?) to interact with the GPU

○ Idea phase
● Could this also be used at an application level ?



Technical Issues

● Have to inject HSA packets
● CPU load
● SDMA unit can probably not be used during a kernel execution
● Coarse-grained : *might* work for different pages
● S_SENDMSG semantics & driver-side implementation

○ who is on the receiving end of the message
○ is message and handler customizable (an example would be great)

● Trap handler implementation ? https://martty.github.io/posts/radbg_part_4/



How could we do it?

● Coarse-grained data
○ Guaranteed to be synchronized at kernel bounds

● Fine-grained data
○ Changes are reproduced on the host
○ Memory model? -> ROCm doc

● PCIe atomics (int64_t)
○ HSA describes this (“fine-grained” memory) doorbell

● Not all memory transfers use the SDMA engine (< 32GB/s)
○ Faster cards (MI200, MI300, …) use “blit kernels” to transfer data hidden from the user
○ Documented? Probably not as they’re not open source
○ Determined by the runtime
○ They might show up through the HSA interception API



● Ben’s idea : fixed size buffer, insert packets in the HSA queue
○ Pre-allocate buffer (say, per kernel)
○ When it is known to be full, signal the GPU through a special HSA packet
○ Caveat : granularity is for multiple kernels

● What about a single kernel with high throughput
○ Can we trigger this *during* execution?
○ What would be the implications of stopping a kernel (counters, ..)
○ Multi-buffering (isomorphic to ring buffers, just different granularities)



Implementation directions

● How to handle memory copies : managed memory or actual shared memory
● Focus shared (MI300A-style) memory first, *might* work on older architectures
● Semantics for buffering

○ Used in rocprofiler apparently
○ Can this be a public interface

● API format 
○ Raw/”packet”/buffer based
○ Lowest possible layer (so “raw”?), unstructured bytes
○ Potential descriptors (format string?)
○ API similar to a file system (r/w, mmap model)
○ Ben has been thinking about doing this for counters

● Instrumentation tools include heap memory for its perf data, kernel is modified to 
access this allocated data, runtime handles periodic/triggered copies to the host

● In line with AMD interests



Current rocprofiler-sdk impl

● Copy at the end of the kernel
● Kernel serialization (but can probably be avoided ?)


