
Scalable Launch Working 
Group Outbrief

Software Tools Workshop
August 14, 2024



Participants

● John Mellor-Crummey, Rice University
● Jonathon Anderson, Rice University
● Ben Griego, Sandia National Laboratory
● Matt Legendre, Lawrence Livermore National Laboratory
● Todd Gamblin, Lawrence Livermore National Laboratory



The Problem

● Applications for modern supercomputers are all dynamically-linked
○ Libraries supplied by GPU vendors are all dynamically-linked

● Launching dynamically-linked applications on supercomputers is problematic
○ Each of thousands of MPI ranks will try to look up each of their shared libraries
○ Today, shared libraries built with Spack often have many RPATH entries
○ To find a library, a process will look for the library in each directory in an RPATH

■ This turns into a thundering herd of processes pounding on the file system



Possible Space of Solutions

● Spack prebinding
● Shrinkwrap 

○ Uses full paths in DT_NEEDED, which prevents the search storm that arises with long RPATH
● Spindle

○ Dynamically caches and multicasts dependence to processes that need them
● Simpler volume mounts



Shrinkwrap Experience

● Didn’t work in practice on Frontier
○ ROCm and MPI libraries loaded in an order with an HSA-related error message
○ Spindle also ran into a similar issue on El Cap (in preliminary testing)
○ May be some improvements in Spack’s link_type:bind – needs further testing



Spack Approaches

● You can use config:shared_linking:bind: to pre-resolve all DT_NEEDEDs in 
your programs

○ Spack keeps RPATHs in case they are needed for dlopens
○ ld.so should load all libraries directly with one open() instead of searching lots of RPATHs
○ https://spack.readthedocs.io/en/latest/config_yaml.html#shared-linking-bind

● Shrinkwrap does this a bit differently:
○ Pre-resolves absolute paths for DT_NEEDEDs of lib/executable and all transitive 

dependencies
○ Puts DT_NEEDEDs on the root executable/library for each pre-resolved absolute path 

● Spack is only doing this for DT_NEEDEDs on each library
○ Doesn’t (yet) give you control over lib races in transitive dependencies
○ Intended use case for Shrinkwrap was incompatible openmp libraries
○ e.g., be sure to load Cray OpenMP instead of GOMP for programs that use both b/c Cray has 

both sets of bindings

https://spack.readthedocs.io/en/latest/config_yaml.html#shared-linking-bind


Simpler Volume Mounts
● Much of the overhead of loading is shared filesystem metadata
● Don’t really need a shared filesystem for executable binaries
● LLNL uses iSCSI block volume mounts for TOSS image on compute nodes

○ OS image gets mounted read-only over iSCSI
○ Seems to be relatively fast
○ Boots happen less frequently than job launches

● Most clouds come with some service like this
○ EBS, Google Block, etc.
○ Default volume for instances is some block device – you pick the volume when you deploy the instance

● LLNL developing user-level block service that is similar
○ Can make a file in Lustre and mount it to compute nodes as a loopback device

■ Performance is comparable to local NVME (slighlty higher latency)
○ Block devices are not safe for regular users (can mount in bad places, override kernel)
○ Need to do this with some controlled setuid program
○ Hobbes at LC has developed SLURM and Flux plugins for ephemeral volumes

■ Makes a Lustre volume
■ Mounts it with user permissions in known location when job starts
■ Destroys it at job end

○ Testing this out at LC right now, likely to be used for CI
○ TODO:

■ persistent volumes with names that live beyond one job
■ Sets of volumes for, e.g., file-per-process checkpoints or large read-only data sets

● CSCS squashFS mounted environments
○ https://cug.org/proceedings/cug2023_proceedings/includes/files/pap143s2-file1.pdf

https://cug.org/proceedings/cug2023_proceedings/includes/files/pap143s2-file1.pdf


Action Items

● We need to identify what problems arise with library loading that causes 
errors when using Spack prebinding

● Investigate auditor composition
○ Spindle auditor + HPCToolkit auditor
○ Can spindle 

● Jonathon needs LLNL credentials for joint work with Matt and Todd on El Cap 
TDS

● Productize Spindle
○ Revisit building Spindle with Spack

■ Can the right auto-detection be done in the context of a Spack build?
■ Can’t detect 

● file systems on the back end
● Slurm policies

■ Need resource manager plugins



Story time

● HPCToolkit ran into a Glibc bug that affects TLS
○ Running OpenMP + ROCProfiler, TLS just gets wiped between things happening
○ Triggered on a dlopen() of an already-loaded library
○ Potentially could affect the Spack prebinding approach


