
1

ASSESSING CPU CODE QUALITY

William Jalby (UVSQ)

UVSQ/UPSaclay: E. Oseret, K. Camus, C. Valensi, H. Bollore, W. Jalby

Machine time donation: MEGWARE

2

OUTLINE

➢ Motivating example

➢ Identifying potential compiler issues

➢ A few exampl

IMPORTANT: Input/comments are welcome. Project is still very flexible

3

MOTIVATING EXAMPLE CONTEXT

➢ TARGET CODE: HACC MK (Livermore: LLNL)

➢ Target hardware: AMD EPYC 9654 96-Core Processor (2 x 96

cores) provided by MEGWARE

➢ Three compilers:

• AMD clang version 16.0.3 (CLANG: AOCC_4.1.0-Build#270

2023_07_10)

• GNU C17 13.2.0 -march=znver4 ….

• clang based Intel(R) oneAPI DPC++/C++ Compiler 2024.0.0

(2024.0.0.20231017)

➢ For each compiler 16 flags were tested.

➢ Linux 5.14.0-427.18.1.el9_4.x86_64 #1 SMP PREEMPT_DYNAMIC

Tue May 28 06:27:02 EDT 2024

➢ Systematic test/benchmarking effort carried out in QaaS project

(Quality as a Service)

4

COMPILER OPTIONS FOR AOCC

16 “standard” compiler options with different optimization levels (O2 and

O3), different vector lengths, ….

Orthogonal choice

option # flags

1O3 -march=znver4
Reference O3 option

pattern (essentially on
Vectorization)

2O3 -march=znver4 -mprefer-vector-width=512

3O3 -march=znver4 -mprefer-vector-width=256

4O3 -march=znver4 -fno-vectorize -fno-slp-vectorize -fno-openmp-simd

5O2 -march=znver4
Reference O2 option

pattern (essentially on
Vectorization)

6O2 -march=znver4 -mprefer-vector-width=512

7O2 -march=znver4 -mprefer-vector-width=256

8O2 -march=znver4 -fno-vectorize -fno-slp-vectorize -fno-openmp-simd

9O3 -march=znver4 -flto

Reference O3 option
pattern + FLTO

10O3 -march=znver4 -mprefer-vector-width=512 -flto

11O3 -march=znver4 -mprefer-vector-width=256 -flto

12O3 -march=znver4 -fno-vectorize -fno-slp-vectorize -fno-openmp-simd -flto

13O2 -march=znver4 -flto

Reference O2 option
pattern + FLTO

14O2 -march=znver4 -mprefer-vector-width=512 -flto

15O2 -march=znver4 -mprefer-vector-width=256 -flto

16O2 -march=znver4 -fno-vectorize -fno-slp-vectorize -fno-openmp-simd -flto

5

PERFORMANCE RESULTS FOR AOCC

O3 in green, O2 in blue

6

PERFORMANCE RESULTS FOR MULTIPLE COMPILERS

AOCC 10x

slower than

ICX !!

7

PERFORMANCE RESULTS FOR MULTIPLE COMPILERS

8

PROBLEMS WITH AOCC

➢ Big performance difference is linked with math library use

➢ AOCC by default uses the libm installed and not its own libalm (AMD Libm).

This library is installed separately from the compiler.

FIRST FIX: we forced libalm use: unfortunately no performance gain.

SECOND FIX: since ICX and GCC did not show any time spent in math library, try
to suppress math library use (more details will be given later).

This time it worked, performance very similar to GCC and ICX

WHAT’S HAPPENING WITH AOCC

9

➢ LESSON 1 (old news): try multiple compiler options.

➢ LESSON 2: try multiple compilers and back port some
optimizations from the best performing compilers (for example
compiler flags or compiler directives).

➢ LESSON 3: THE REAL ONE: try to analyze and detect compiler
failures systematically.

For using LESSON3, you need tools…..

MAIN LESSONS

10

Evaluate current compiler capabilities:

➢ Starting with ASM produced.

➢ Evaluate ASM using CQA (Code Quality Analysis) included in MAQAO.

➢ Generic topics of interest

• Port / FU usage

• Vectorization

• Instruction set use

• Vectorization Roadblocks

• Data access

➢ Use simplified simulation tools (such as CQA/UFS) to get performance

estimations; critical for comparing ASM versions

➢ We will take into account both compiler mistakes but also source code

issues.

ANALYZING COMPILER OUTPUTS (1)

11

Focus on loops: innermost/in between/outermost

5 main categories

1. Loop computation: issues related to the computation organization.

2. Control Flow: issues relevant to control

3. Data access: issues essentially related to memory operations

4. Vectorization roadblocks: issues preventing vectorization

5. Inefficient vectorization: issues related to vectorization quality

ANALYZING CODE QUALITY

12

Two level analysis

• Static at the ASM level denoted (SA) in next slides

• Dynamic requiring measurement at execution denoted (DT) in
the sequel

• All static metrics/issues are detected by CQA (Code Quality
Analysis included in MAQAO) while dynamic rely on MAQAO
instrumentation at binary level

• Dynamic profiling is also essential to assess loop relative cost.

ANALYZING CODE QUALITY (2)

13

LOOP COMPUTATION ISSUES

ISSUES

Presence of reductions dependency cycles (SA)

Presence of expensive FP instructions: div/sqrt, sin/cos, exp/log, etc…(SA)

Presence of special convert instructions: moving between different FP format (SA)

Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using

FMA (SA)

Large loop body: over micro-op cache size (SA)

Presence of a large number of scalar integer instructions: more than 1.1 x speedup

when suppressing scalar integer instructions (SA)

Bottleneck in the front end (SA)

Low iteration count (DT)

Highly variable Cycle per Iteration across loop instances (DT)

14

CONTROL FLOW ISSUES

ISSUES

Presence of calls (SA)

Presence of 2 to 4 paths (SA)

Presence of more than 4 paths (SA)

Non-innermost loop (SA)

Low iteration count (DT)

15

VECTORIZATION ROADBLOCKS

ISSUES

Presence of calls (SA)

Presence of 2 to 4 paths (SA)

Presence of more than 4 paths (SA)

Presence of reductions dependency cycles (SA)

Presence of constant non unit stride data access (SA)

Presence of indirect access (SA)

Non innermost loop (SA)

16

VECTORIZATION EFFICIENCY ISSUES

ISSUES

Partial or unexisting vectorization (SA)

Presence of expensive instructions : scatter/gather (SA)

Presence of special instructions executing on a single port (SA): typically

all data restructuring instructions, expand, pack, unpack, etc…

Use of shorter than available vector length (SA)

Use of masked instructions (SA)

Time spent in peel/tail loop greater than time spent in main loop (DT)

17

Dealing with more complex issues:

➢ Connecting ASM code and source code

▪ Relying on compiler info –g option allows to establish link
between binary and source code.

➢ Dealing with multiple code versions

▪ Goal: Grouping all of the versions together

▪ Use ASM/source code connection (cf above).

▪ Allow some approximation in source line numbers: code
section from lines 72 to 81 is probably equivalent to code
section from lines 71 to 82.

▪ Multiple ASM pointing to the same code section are likely to
correspond to multiple versions

REMARK: approximation in source line numbers does not work with
very short size loops (cf array statements)

ANALYZING CODE QUALITY (3)

18

OPTIMIZATION SUMMARY HACC MK COMPILED WITH AOCC

19

Dealing with multiple compiler outputs on the same code.

Very similar to detect multiple code versions.

➢ For each compiler connect ASM code and source code

▪ Relying on compiler info –g option allows to establish link
between binary and source code.

➢ Dealing with multiple compiler outputs

▪ Use ASM/source code connection (cf above).

▪ Allow some approximation in source line numbers: code
section from lines 72 to 81 is probably equivalent to code
section from lines 71 to 82.

▪ Multiple ASM pointing to the same code section are likely to
correspond to the same source code

REMARK 1: approximation in source line numbers does not work
with very short size loops (cf array statements)

ANALYZING CODE QUALITY (4)

20

COMPARING LOOP ASSEMBLY CODES

Comparing AOCC, GCC and ICX

21

LOOKING AT LOOP ASSEMBLY CODES (ZOOM)

Focussing on AOCC versus GCC

22

Library use can be easily monitored and analyzed.

22

DIVING INTO LIBRARY USE (1)

23

.

23

DIVING INTO LIBRAY USE (2)

24

DEALING WITH FULL APPLICATIONS: GROMACS

25

Gather all of previous metrics from the Optimization

summaries and provides them :

o to code developers for optimization

o to compiler developers to fix weaknesses

IMPORTANT ISSUE : cannot compare directly compiler

optimization reports (lack of standards)

COMPARING AND IMPROVING COMPILERS: detect

good features of a compiler and reinject them in another

one.

IMPROVING COMPILERS

26

WRAP UP/CONCLUSIONS

➢ Code quality generated by the compiler is of primary importance: this

quality highly dependent upon compiler and compiler options.

Looking for the best compiler options can be extremely expensive

➢ Assessing code quality is therefore very important

➢ CQA/MAQAO/ONEVIEW (www.maqao.org) provides an efficient

way of assessing code quality by identifying compiler

shortcomings/failures

• Helping code developers finding the right compiler directives

• Helping compiler developer improving/fixing their software

➢ Moving to GPU ? Needs access to documentation on ASM

• Will start with AMD

http://www.maqao.org/

27

THANKS FOR YOUR ATTENTION

Questions ?

28

MAQAO:

Modular Assembly Quality Analyzer and Optimizer

➢ Objectives:

• Characterizing performance of HPC applications

• Guiding users through optimization process

• Estimating return of investment (R.O.I.)

➢ Characteristics:

• Support for Intel / AMD x86-64 and AArch64 (beta version)

▪ Work in progress on GPU Support: integrating other tools output or
building on primitives (HSA)

• Modular tool offering complementary views

• LGPL3 Open Source software

• Binary release available as static executable

➢ Philosophy: Analysis at Binary Level

• Compiler optimizations increase the distance between the executed
code and the source code

• Source code instrumentation may prevent the compiler from
applying certain transformations

➔ What You Analyse Is What You Run

SITE: www.maqao.org

28

29

MAQAO Ecosystem

➢ Historical partnerships

• CEA (French Department of Energy) Since 1990 and first MAQAO

version on Itanium and long term partneship on application analysis

and optimization and on tools

• ATOS: since 1990: compilers, performance tools and applications

benchmarking and optimization

➢ Recent partnerships

• AWS

• SiPearl

➢ Current Projects

• Exascale Computing Research (ECR): UVSQ, Intel (2005-2020)

and CEA

• EMOPASS (European Processor Initiative)

• European Centers of Excellence : TREX, POP3

➢ Partner of the VI-HPS consortium

➢ Past projects: H4H, COLOC, PerfCloud, ELCI, MB3, ...

29

