
Rocprofiler-SDK

Benjamin Welton

on behalf of AMD ROCProfiler Team

Scalable Tools Workshop

August 12, 2024

2 |

[Public]

What is Rocprofiler-SDK?

New GPU Performance Tool Library

• Provides APIs for:
• Tracing (HSA, HIP)

• GPU HW PMC (Performance Counters)

• Collected on either a per-dispatch or device wide basis (agent profiling)

• PC Sampling (HW supported on MI300, Trap based MI2XX)

• Replaces rocprofilerv1, rocprofilerv2, and roctracer

3 |

[Public]

Rocporfiler-SDK Design Goals

• Simplify Design and Usage

• Removed the need to use multiple different SDKs to collect common

performance data

• Revamped the interface to make it easier to setup

• Lower Profiling/Tracing Overhead

• Improve Stability/Accuracy

• Improve testing to catch issues

• Add tests to verify values obtained from tracing

• Expand Feature Set

• PC Sampling, better device HW PMC counter support, etc.

4 |

[Public]

Community Feedback Lead Development

• Wanted to include the tool community in development of rocprofiler-sdk

• You are our customers, and we wanted to address your problems

• Avoid black box development where things change without explanation/warning

• Active role in helping port over community written tools

• Personal hack-a-thons with several tool development teams to migrate their code and get

feedback

• HPCToolkit

• Caliper

• TAU

• PAPI

• Score-P

5 |

[Public]

Core Rocprofiler-SDK Services

6 |

[Public]

Core Rocprofiler-SDK Services

Context Immutable object where the tool
defines what services to use

Multiple services can be defined in a
context (i.e. tool may want to use
API Tracing with Counter Collection)

Multiple contexts can be created and
turned on/off as needed

Allows tools to be notified early if
incompatible options are present

7 |

[Public]

Core Rocprofiler-SDK Services

API
Tracing

Provides HSA and HIP
callback tracing

Can ask for traces based on
higher-level operations (such
as trace calls that perform
memory copies)

Multiple tools and contexts
can perform tracing at the
same time

8 |

[Public]

Core Rocprofiler-SDK Services

Tracing
Record

Buffer

When Buffer
Full, Invoke

Tool

Buffered
Tracing

Stores records in a buffer,
notifies tool when buffer is full

9 |

[Public]

Core Rocprofiler-SDK Services

Tracing
Record

Invoke
Tool

Callback
Tracing

Immediately calls tool when
function is invoked/completed

10 |

[Public]

Core Rocprofiler-SDK Services

Tracing
Record

Invoke
Tool

Callback
Tracing

Immediately calls tool when
function is invoked/completed

11 |

[Public]

Core Rocprofiler-SDK Services

Counter
Collection

HW PMC Counter Interface

Two modes:

Dispatch based counter collection

Agent based counter collection

12 |

[Public]

Core Rocprofiler-SDK Services

Counter
Collection

Dispatch Based Counter Collection

Kernel Launch
Packet Enqueued

Rocprofiler
Interception

Tool Callback to
ask what counters

to collect

Kernel +
Instrumentation

Packets written to
HSA

Kernel
+Instrumentation

Executed

Record produced
(either written to
buffer or sent via

callback)

13 |

[Public]

Core Rocprofiler-SDK Services

Agent
Based
Counter
Collection

Collection of counter values on the agent as a
whole (not for specific kernel executions)

Tool Responsible for manually
starting/stopping/and sampling values (via API
calls)

Useful for System-Wide monitoring

Tool selects
counters + device

to profile

Tool start’s
context to begin

collection

Tool calls counter
sample to take the

current counter
values

Counter values
returned

immediately after
sample collected

14 |

[Public]

Core Rocprofiler-SDK Services

PC
Sampling

Allows collection of PC Samples
of GPU Kernels

Two modes:

Host-Trap and Stochastic

Hardware Support is limited to
MI2XX (Host-Trap Only) and
MI3XX (Host-Trap + Stochastic)

Tool specified sampling and
interval periods

15 |

[Public]

Core Rocprofiler-SDK Services

Host-
Trap
Sampling

Driver (KFD) creates a kernel thread
to periodically inject s_trap into the
GPU distributed sequencer (SQ)

Each wave is trapped in a round-
robin manner, outputting PC
addresses via PCI bus.

Data collected includes PC,
exec_mask, timestamp, etc

Wave selection/trap issuance is
done at Linux KFD level

16 |

[Public]

Core Rocprofiler-SDK Services

Stochastic
Sampling Similar to Host-Trap but instead

uses a HW based solution to wave
selection on GPU.

Lower overhead than host-trap
based solutions (i.e. not linux kernel
driven, but hardware driven).

Still a work in progress

17 |

[Public]

Requested Features & Improvements From External Tool Developers

• General performance improvement

• Dramatically improve reliability and stability between ROCm releases

• Robust initialization for rocprofiler and tools

• Multi-tool Support

• Make external correlation IDs more useful

• Ability for tool to force initialization (instead of relying on rocprofiler to call tool)

• Notifications for when rocprofiler creates internal threads

• Thread pool for buffer callbacks

• Improved thread-safety, error handling, memory access correctness

• Eliminate memory leaks

• Improve counter collection performance

• Topology/agent information without having to use (and initialize) HSA-runtime and/or HIP

18 |

[Public]

Reliability and Stability Improvement Updates

• Code coverage

• Tests: 87%

• Samples: 75%

• Total: 87%

• Integration testing framework validates output data produced by library / rocprofv3

• Strict static assertions ensuring runtimes (HSA, HIP, etc.) do not break tracing ABI

• Shifting paradigm → decoupling profiling from runtimes

19 |

[Public]

Availability and Samples

• Rocprofiler-SDK beta is available now in ROCM 6.2.

• Full release tentatively in ROCM 6.3 (caveat we reserve the right to change

the API during the transition from v1/v2)

• Source code is open source:

• ROCm/rocprofiler-sdk (github.com)

• Samples are included to show how to use rocprofiler-sdk in tools

• New version of rocprof (the tool) utilizing the SDK will also be available

• New output mode like CTF and others will be supported

https://github.com/ROCm/rocprofiler-sdk

20 |

[Public]

Copyright and disclaimer

 ©2024 Advanced Micro Devices, Inc. All rights reserved.

 AMD, the AMD Arrow logo, CDNA, EPYC, Instinct, Infinity Fabric, ROCm, Ryzen, and combinations thereof are trademarks of Advanced

Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their

respective companies.

 The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and

typographical errors. The information contained herein is subject to change and may be rendered inaccurate releases, for many reasons,

including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product

differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has

risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise

correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the

content hereof without obligation of AMD to notify any person of such revisions or changes.

 THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE

CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY

APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR

ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY

INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

	Slide 1: Rocprofiler-SDK
	Slide 2: What is Rocprofiler-SDK?
	Slide 3: Rocporfiler-SDK Design Goals
	Slide 4: Community Feedback Lead Development
	Slide 5: Core Rocprofiler-SDK Services
	Slide 6: Core Rocprofiler-SDK Services
	Slide 7: Core Rocprofiler-SDK Services
	Slide 8: Core Rocprofiler-SDK Services
	Slide 9: Core Rocprofiler-SDK Services
	Slide 10: Core Rocprofiler-SDK Services
	Slide 11: Core Rocprofiler-SDK Services
	Slide 12: Core Rocprofiler-SDK Services
	Slide 13: Core Rocprofiler-SDK Services
	Slide 14: Core Rocprofiler-SDK Services
	Slide 15: Core Rocprofiler-SDK Services
	Slide 16: Core Rocprofiler-SDK Services
	Slide 17: Requested Features & Improvements From External Tool Developers
	Slide 18: Reliability and Stability Improvement Updates
	Slide 19: Availability and Samples
	Slide 20: Copyright and disclaimer
	Slide 21

