
LLNL-PRES-868028

Programmatic Analysis of Large-Scale
Performance Data

Dragana Grbic

August 12, 2024



2
LLNL-PRES-868028

Ø HPCToolkit collects fine-grained measurement data
— typically entire program executions
— CPU and GPU performance
— CCTs contain detailed information about program’s execution

Ø Measuring does not require a lot of manual work
— users don’t have to annotate code or specify regions to measure

Ø Analyzing can be difficult and time consuming
— generated databases can be huge: long executions, large-scale 

parallelism
— manual inspection using GUI tool can be tedious because of the 

overwhelming detail
— users need support for automated and programmatic analysis

Measuring and Analyzing Applications with 
HPCToolkit



3
LLNL-PRES-868028

Approaches for Programmatic Analysis

Ø Using existing tools for automated analysis
— Hatchet for analyzing single application runs
— Thicket for analyzing multiple application runs
— techniques for automatically reducing large HPCToolkit’s calling context 

trees

Ø New API for analyzing large-scale HPCToolkit data
— selective read of slices of performance data from persistent storage
— users can use query expressions to extract slices of performance data
— more scalable and efficient for analyzing large-scale executions



4
LLNL-PRES-868028

Using Hatchet and Thicket to 
Analyze HPCToolkit Data



5
LLNL-PRES-868028

Hatchet and Thicket Performance Profiles

Ø Programmatic analysis of performance data 
generated by different tools

— Hatchet profile modeled with a Graph object and 
DataFrame table

— Thicket profile modeled with a Graph object, DataFrame
table, and Metadata table



7
LLNL-PRES-868028

Large Calling Context Trees

Ø HPCToolkit’s calling context trees can contain many nodes
— nodes with little cost incurred
— implementation details of library functions
— nodes with no line mapping information (compiled without -g option)

Ø Hatchet and Thicket were not designed to handle data as large 
as HPCToolkit’s

— calling context trees are huge and difficult to interpret and visualize
— importing multiple application runs into Thicket is slow as unifying calling 

context trees is costly for large trees



8
LLNL-PRES-868028

MPI_Finalize Subtree



9
LLNL-PRES-868028

MPI_Waitall Subtree



10
LLNL-PRES-868028

OpenMP Subtrees



11
LLNL-PRES-868028

cudaDeviceSynchronize Subtree



14
LLNL-PRES-868028

Testing Thicket with AMG Benchmark

1 rank 2 ranks 4 ranks 8 ranks 16 ranks 32 ranks 64 ranks

Sequential 1689nodes
0.71s

3170nodes
3.99s

4194nodes
9.61s

5392nodes
24.58s

6663nodes
47.21s

7713nodes
79.25s

9749nodes
158.08s

OpenMP 2849nodes
1.19s

5195nodes
8.72s

6961nodes
22.65s

8577nodes
46.14s

10829nodes
97.80s

13553nodes
208.04s

18336nodes
416.86s

CUDA 13063nodes
5.61s

31828nodes
207.85s

38453nodes
672.13s

48045nodes
1589.72s

65030nodes
3213.55s

89239nodes
6525.85s

Size of CCT (number of nodes) 
when importing data into Thicket

Performance (time in seconds) 
when importing data into Thicket

Almost 
two hours



16
LLNL-PRES-868028

Data Reduction

Ø Heuristic for automatically reducing the size of large calling 
context trees before importing into analysis model

— automatically detect and remove specific nodes from the tree and 
optionally their entire subtree

— users can choose which heuristics they want to enable when reading the 
data

Ø Two performance improvements
— the reader does not have to parse subtree of a node declared uninteresting 

by a specific heuristic
— performing union operation of Hatchet profiles inside Thicket is faster for 

smaller trees



17
LLNL-PRES-868028

Reduction Heuristics

Ø removing nodes with inclusive time less than 1% of application time
Ø removing implementation details of library functions (MPI, OpenMP, 

CUDA)
Ø removing nodes with no line mapping information (system library 

routines)
Ø removing function call line nodes (each function call is recorded with a 

source line node that represents the place of the call and function itself)



18
LLNL-PRES-868028

Improvement: Number of CCT nodes

1 rank 2 ranks 4 ranks 8 ranks 16 ranks 32 ranks 64 ranks

Sequential 142 out of 
1689 (8%)

150 out of 
3170 (5%)

155 out of 
4194 (4%)

159 out of 
5392 (3%)

166 out of 
6663 (2%)

173 out of 
7713 (2%)

179 out of 
9749 (2%)

OpenMP 122 out of 
2849 (4%)

138 out of 
5195 (3%)

144 out of 
6961 (2%)

149 out of 
8577 (2%)

159 out of 
10829 (1%)

171 out of 
13553 (1%)

196 out of 
18336 (1%)

CUDA 94 out of 
13063 (0.7%)

115 out of 
31828 (0.4%)

115 out of 
38453 (0.3%)

115 out of 
48045 (0.2%)

115 out of 
65030 (0.2%)

118 out of 
89239 (0.1%)

More than 95% of the database
consists of regions where little
cost was incurred, library
implementation details, etc.

Size of CCT (number of nodes) 
when importing data into Thicket



19
LLNL-PRES-868028

Improvement: Performance of Importing Data

1 rank 2 ranks 4 ranks 8 ranks 16 ranks 32 ranks 64 ranks

Sequential 0.71s
0.11s

3.99s
0.33s

9.61s
0.59s

24.58s
0.90s

47.21s
0.97s

79.25s
1.13s

158.08s
1.21s

OpenMP 1.19s
0.22s

8.72s
0.44s

22.65s
0.70s

46.14s
0.84s

97.80s
1.19s

208.04s
1.37s

416.86s
1.52s

CUDA 5.61s
0.46s

207.85s
2.03s

672.13s
2.20s

1589.72s
3.10s

3213.55s
4.04s

6525.85s
4.77s

Several hours vs. 
several secondsPerformance (time in seconds) 

when importing data into Thicket



21
LLNL-PRES-868028

Transforming the Original Tree

Large Calling 
Context Tree

13063 CCT nodes

94 CCT 
nodes



22
LLNL-PRES-868028

Experiments with Thicket

Increasing number 
of MPI ranks by 2

Decreasing time by 2



23
LLNL-PRES-868028

Detecting Load Imbalance

Profiles from single 
execution runs

Time is evenly distributed 
across different MPI ranks



24
LLNL-PRES-868028

Comparing Different Parallelization Strategies

Extracting code regions that 
only exist in CUDA profile



26
LLNL-PRES-868028

New API for Analyzing 
HPCToolkit Data



27
LLNL-PRES-868028

New API: Selective Read of Slices of Data

Ø When analyzing large-scale executions users might want to 
selectively read slices of performance data

— performance profiles for specific execution contexts
— performance profiles for specific calling contexts
— performance profiles for specific metrics
— trace lines for specific execution contexts
— trace lines for specific time intervals

Hatchet and Thicket 
don’t support trace 
analysis



28
LLNL-PRES-868028

What is a Slice of Profile?

Ø Slicing can be performed in three dimensions
— slicing by execution context (“rank(0).thread(1,5-7)”)
— slicing by calling context (“function(MPI_*)”)
— slicing by metrics (“time (i)”)



29
LLNL-PRES-868028

Example of Reading Slices of Profiles

Trace view of GEM execution showcasing CPU underutilization

q Slicing execution context: instead of reading all parallel profiles, extract only CPU profiles
q Slicing CCT: instead of reading the entire CCT, extract only OpenMP idle nodes
q Slicing metrics: instead of reading all metrics, extract only time metric



30
LLNL-PRES-868028

How is Slicing Performed?

Ø Query API maps query expressions into positions inside file
— “rank(0).thread(1,5-7)” -> profile IDs
— “function(MPI_*)” -> CCT IDs
— “time (i)” -> metric IDs

Ø The API uses special metadata tables to map queries to logical 
IDs of data slices within the file

profiles are organized 
into an array where index 
is equal to profile ID

CCT nodes are sorted 
by ID inside a profile

metrics are sorted 
by ID inside a profile



33
LLNL-PRES-868028

Extracting and Storing Slices of Profiles

Ø Profiles are stored in a Pandas DataFrame that is initially 
empty

— on the first access on a specific slice of profile, only that slice is 
fetched and stored in memory

— users extract slices using queries, and Query API maps queries to 
logical positions inside the file



35
LLNL-PRES-868028

Detecting CPU Underutilization

Trace view of GEM execution showcasing CPU underutilization



36
LLNL-PRES-868028

Detecting GPU Idleness

Trace view of GAMESS execution showcasing GPU idleness



37
LLNL-PRES-868028

Sampling Strategies

Ø Query API enables users to sample performance data in two 
different ways

— sampling by context - sampling by execution context, calling context, 
or sampling by specific metrics when extracting slices of profiles

— sampling by size - sampling by fragments of data - range of values for 
the execution context or time intervals when extracting slices of traces



38
LLNL-PRES-868028

Analyzing Large-Scale Executions

Ø Large-scale execution of LAMMPS - 4TB of data



39
LLNL-PRES-868028

Blaming GPU Idleness

Detecting longest GPU idle event and blaming corresponding CPU code

Visualizing CPU activity 
while GPU was idle



40
LLNL-PRES-868028

Conclusion

Ø Users can analyze HPCToolkit data using Hatchet and Thicket
Ø when reading the data, they can enable various data reduction 

heuristics

Ø New API for extracting slices of HPCToolkit data
Ø users can extract slices of performance data from the persistent 

storage using queries
Ø efficient solution when analyzing very large-scale executions
Ø users can analyze both profiles and traces
Ø ongoing work:

Ø creating custom regression tests for validating the performance 
database

Ø more work on trace analysis
Ø extending the library to read the data from a remote server



This work was performed under the auspices of the U.S. Department 
of Energy by Lawrence Livermore National Laboratory under contract 
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC


