HPCToolkit: New Support for GPU Measurement

John Mellor-Crummey and Yuning Xia
Rice University

Scalable Tools Workshop
August 12, 2024

A [=

b |
‘National Nucloar Security Administration

-
P
Pa

& : (, U.S. DEPARTMENT OF Office of STEP
@) ENERGY | 2™¢

WRICE &w

HPCToolkit and Graphics Processing Units

Goal: Support performance analysis including PC sampling on AMD, Intel, and NVIDIA GPUs

Coarse-grain Fine-grain

Binary analysis:

Vendor Tracing D
measurement measurement loops, inlined code
NVIDIA CUPTI PC sampling CUPTI nvdisasm + Dyninst
: PC sampling with : :
AMD Rocprofiler Rocprofiler-sdk Rocprofiler Dyninst
S Level Zero
Intel OpenCL and Level 0 instrumentation IGA + Dyninst
. callbacks
+ PC sampling

Outline

- Experiences with HPCToolkit and Exawind on Frontier
- HPCToolkit and Rocprofiler-sdk
- HPCToolkit’s new support for PC sampling on Intel GPUs

ExaWind: A Wind Farm Simulator

- Simulate a wind farm with tens of megawatt-scale wind turbines
- Code leverages all CPU cores and GPU tiles on a node

- AMR-Wind handles the structured grid flow between turbines with one core per GPU

- Nalu-Wind handles the unstructured CFD over the turbine geometry, running on the
node’s remaining 56 CPU cores

ExaWind: Wakes from Three Wind Turbines Over Time

% Figure credit: Jon Rood, NREL

ExaWind: Visualization of a Wind Farm Simulation

Figure credit: Jon Rood, NREL

ExaWind: Execution Traces on Frontier Collected with HPCToolkit

Traces on roughly ~70K MPI ranks for ~17 minutes

Before: MPI waiting (bad), shown in red After: MPI overhead negligible*

LLL N N Mpeviewer d4 jeen

Fle View Fiwe ep File thew Filior Help
B Frofie exwnd 8 Tace sowind 8 ek 44444 Ay BHE "0 [Profie sxawind 8 Trace smawind O PR Ghed OEmEs s S0
= e

e i 4 Time Range [0n, 4508 ©

ToraRange [omis, 18 53mi] Crons Hir (B 47mie, NDDE 2148167158 CORE § RANK 34088 THREAD 0} NCOR ZH419945 CORE 55 AR 000 THREAD 1]

Cl anachc Sumincs (G5 idheews Bame.

k Figure credits: Jon Rood, NREL *replaced non-blocking send/recv with ialltoallv

ExaWind Testimonials for HPCToolkit

... we can’t overstate how complicated ExaWind is in general, and how complicated it is to
build, so finding out that HPCToolkit could easily profile our entire application without a ton of
instrumentation during the build process, and be able to profile it on a huge amount of Frontier
with line numbers and visualizing the trace was really amazing to us.

- Jon Rood NREL (6/3/2024)

... during a recent hackathon we had, we improved our large scale performance by 24x by
understanding our code better with HPCToolkit and running it on 1000s of nodes while profiling.

We also recently improved upon this by 10% for our total runtime.

- Jon Rood NREL (5/31/2024)

Outline

- Experiences with HPCToolkit and Exawind on Frontier
- HPCToolkit and Rocprofiler-sdk
- HPCToolkit’s new support for PC sampling on Intel GPUs

Motivation: Shortcomings of AMD’s Rocprofiler and Roctracer

Like other GPU runtimes, ROCm runtime and tool libraries created threads without notice
- Monitoring may be ill-advised or unsafe
No well-defined point for tool initialization
Environment variables were used to pass key information
Rocprofiler and roctracer were separate libraries; composing them is non-trivial
Lack of attention to compatibility across different ROCm versions
Hard for tool projects to interoperate (e.g. HPCToolkit and PAPI)
Unable to correlate kernel launches with machine code on systems with heterogeneous GPUs
No support for PC sampling

Design Recommendations (Mellor-Crummey CORAL2 Meeting 6/23)

Everything should go through an API
— avoid use of environment variables to specify libraries, metrics files, etc.
* One version of the software should support all recent ROCm versions
— compile a tool with the newest header files
— use tool with shared library matched to the runtime version compiled into an application
Tool library should
— support measurement of kernels using HW counters and activity tracing in the same execution
— support PC sampling for non-root users
— provide a simple mechanism to correlate measurement data with GPU binaries and kernels
— support measurement of both HIP and HSA-based OpenMP
* Need a mechanism to explain thread creation
* Need a mechanism to guarantee tool initialization
Tool library should report all significant GPU events, event those not user initiated
— e.g. scratch space reclamation on GPUs

% Rocprofiler-sdk (ROCm 6.2, released 8/7/2024) addresses most of these issues

Interfacing HPCToolkit and Rocprofiler-sdk

» Rocprofiler-sdk measures employs various threads to measure performance
- a sampling thread per GPU tile to receive PC samples
- an API thread to receive operation trace records (kernel execution, memory copies, ...)
- a counter thread to receive counter measurements of GPU kernels
« In HPCToolkit, each application thread records its own GPU measurements in profiles and traces

« HPCToolkit ships performance measurements between tool threads and application threads using
Multi-Producer, Single-Consumer (MPSC) queues

- avoids the need for all data structures a thread uses to record its performance to be concurrent
« the only thread that records data in a thread’s profile is the thread itself

- wait-free data structure for performance measurement (!)

Interthread Communication in HPCToolkit with Rocprofiler-sdk

Monitoring threads

Application threads

Thread 1

GPU operation
submission callback

J

[ThreadID: MPSCQ]

associative container

Al

<<gal>=>

fvead 4

GPU API
completion callback

Trace MPSC queues

Tracing threads

P>~ e

l GPU AP

completion callback

In

_—
\ EXASCALE
E (l) P EOMPLITING
K PROJECT
o —

=<puts> 5
(-—-J e —— ' | Stream 1
GPU operation <] }—
submission callback 2 Thread &
— Slream 2
<<puts> Thread 3 3 I l I—“‘———)[Record trace
GPU operalion i .
| submission callback] Ca"mg —3 | l Stream 3
context + }—
trees ¥
Thread 1 }/ﬁ —ﬂ l I Iream 4 Thread 7
Fiocas/aliribulp : : Record trace
aclivities J E’: ‘ | 3 5
Thread 2 / =
Process/alinbule
activities |
Thread 3 /
P fattribute
aclivities)]

Trace |
files

HPCToolkit + Rocprofiler-sdk: Tool Initialization (Mostly Complete)

« Implemented rocprofiler_configure, which coordinates initialization with rocprofiler-sdk
* registers to receive tool initialization and finalization callbacks
* registers to receive callbacks before/after thread creation
» Skip monitoring of runtime and tool threads

* When rocprofiler-sdk triggers the tool initializer
» guarantee a rendezvous of HPCToolkit’s initialization and Rocprofiler-sdk initialization

* initialize hpcrun, which enables GPU monitoring specified by command line arguments to hpcrun
» Thread pre-create/post-create callbacks enable tool to ingnore runtime/tool threads
* Remaining issue: need to selectively configure monitoring rather than monitoring everything

HPCToolkit + Rocprofiler-sdk: APl Tracing (Mostly Complete)

* Initialization
* register for callback when a GPU operation is initiated
* register to have API thread receive buffer of records detailing execution of GPU operations (kernels, copies, ...)
* Measurement
* when a GPU operation is launched, application thread
* unwinds the call stack to determine the calling context
* assigns the operation an external correlation id: [thread id, sequence number]
* records mapping between correlation id and calling context
« when the API thread receives a buffer of trace records
* decodes each record in the buffer
* sends information about a GPU operation back to the application thread identified by the correlation id
* application thread
* receives measurement data & looks up the associated calling context using the correlation id
* records appropriate GPU operation metrics in its profile (time, bytes copied, ...)
* sends notice of event to a tracing thread
* tracing thread
* enters the operation in a trace line for the GPU queue
* Remaining issue: need to integrate support for operations beyond kernel launch and memory copies

R

HPCToolkit + Rocprofiler-sdk: PC Sampling (Full Implementation)

* Initialization
* iterate over all agents

* configure MI210 GPU to record PC samples as kernels execute and report PC samples to a sampling
thread for that GPU

* Measurement
* sampling thread
» decodes each PC sample in a trace buffer
 constructs a normalized PC by mapping to a code object using load map
* sends the sample back to the application thread identified by the correlation id for the sample
* application thread
 uses correlation id from the sampling thread to identify the calling context for the kernel launch

* records normalized PC as a child of the calling context where it was invoked

GPU kernel source

Host (CPU) call stack

Device (GPU) call stack

HPCToolkit + Rocprofiler-sdk: PC Sampling (Full Implementation)

hpcviewer (on ufront.cs.rice.edu)

Fle View Filter Help
| Profile: vectoradd_hip.exe

int x = hipBlockDim x * hipBlockldx x + hipThresdldx x:
int y = hipBlockDim y * hipBlockIdx y « hipThreadlds y;

54 1=y * width + %
E { [4 < {width * heirmli

int x = blockDiaX * blockldx.x + threadldx.x;
int y = blockDin¥ * blockloy.y = threadldx.y;

fma ki sk s
e

vodd vectoradd float{float® a, comst float® b, const float® c, int width, int height) {

Top-down view Bottom-up view| Flat view

r 3G Il ME A ul-i

4 Experiment Aggregate Metrics

3.53c+63 100.0% 3.530+03 10006

4 <program root>

3.53e+03 100.0%

4 5 amkrown

4 » main 3.53e+83 100.0%
4 loop atvectorsdd _hip.cpp: 121 3.53¢+03 100.0%
4 vectoradd _hip.cpp: 122 3.53e+03 100.00%

4 5 rocp chsa: : namespace): P d const®, unsigned long, unsigned long.... | 3.53e+63 160.0%

A loop at queve cpp: 236 3.53e+63 100.0%
4320 i phase_enter. callbach_tracing_kermel_disp. | 3.53e+63 160.0%

4 loop at tracing hpp: 330 3.53e+02 100.0%

4 349 5 «gpu kernel> 3.530+63 100.6%

wectoradd hip.cpp: 61
4 51 » [1] --hip_builtin_blockDim..t:- .get_x(
¥ 309 0 [1] -_hip.get.block.dim.x(
wectoradd _hip.cpp: 55
amd _hip_runtime he 0
wectoradd_hip.cppc 51
wectoradd.hip.cpp: 54

4 5 vectoradd _flost(float®, Moat carst®, Most corst®, int, int] [caef0dB5e3b3L5ST43753df:

3.53e+63 100.0%

1.530+03
6. 60es01
6. G0e-01
2.60e-61
1.60e+01
1.20e+01
B.00e+00

HPCToolkit + Rocprofiler-sdk: GPU Counters (Substantially Complete)

* Initialization

* iterate over all agents to assess the available counters

* assemble a counter ‘profile’ for each GPU agent to record requested counter values
* Measurement

» counter thread receives counter values in a trace buffer and sends them back to the application thread
identified by the associated kernel launch correlation id

* application thread will use the correlation id from the counter thread to identify the callpath where the
kernel was launched

 application thread will record the counters in the profile
* Remaining issues
* ship counter values to application thread

* use correlation id to locate the calling context
e augment profile for calling context

R

HPCToolkit + Rocprofiler-sdk: Managing GPU Code Objects

* Initialization
* register for callbacks when code objects loaded/unloaded
* sampling thread receives unloading notifications
* Measurement
* API thread receives code object notifications and records code objects during execution
* Post processing
* hpcstruct analyzes AMD GPU binaries
* Remaining issues
* record call site information to enable reconstruction of static call graphs

* investigate why attribution of PC samples by hpcprof without hpcstruct files omits some source lines

Findings using Rocprofiler-sdk Pre-release

* Agent iterator exposes ALL AMD GPUs, not just those visible using ROCR_VISIBLE_DEVICES
* APl ENTER/EXIT callbacks don’t always occur on the application thread

— when using counters, we saw that often these callbacks occur on an HSA thread
» Corresponding APl ENTER and EXIT callbacks don’t always occur on the same thread
* Rocprofiler-sdk destructors may be called too early

— destructors for C++ static objects are triggered on exit

— HSA asynchronous was still at work and later had a SEGV trying to use rocprofiler-sdk data structures
» External correlation id callback added as an alternative to the callback ENTER/EXIT

— would prefer a pair of callbacks BEFORE/AFTER enqueue
* Awkward to configure monitoring

— monitor KERNEL_DISPATCH, MEMORY_COPY

— a collection of calls to HIP functions that match regular expressions

Outline

« Experiences with HPCToolkit and Exawind on Frontier
« HPCToolkit and Rocprofiler-sdk
« HPCToolkit’s new support for PC sampling on Intel GPUs

PC Sampling on Intel GPUs: Flat Samples without Context

* Instruction samples are collected separately on each active tile/sub device and merged in a buffer

returned by Intel’s LevelZero API

« Intel Unitrace only attributes PC samples to kernel names, not individual kernel launches

Device
37 I--- Device #@ Metrics === I /

SbidStall[Events], SyncStall[Events], InstrfetchStall[Events], OtherStall[Events],

Kernel, IP[Address], Active[Events], ControlStall[Events],

PipeStall[Events], SendStall[Events], DistStall[Events],

“matmul(sycl::_V1::queue&, float (*) [128], float (*) [2048], float (") [2e48])::{lambda(sycl::_vi::id<2>)#1}", exeeeeeece, 23, e, 5, 8,
41 ?l;tatmultsya::_vl:::;eue&, float (") I?az.?}, float (*) [2048], ::2Loa: (*) [ZNS])::{I;hda(syclz 1_Vi::id<2»)#1}", exooesoeda, 34, a, 3, @,
E!\s.t;‘l:m\.ll(s:.'cl::_ ::q:;ue&, float (%) flg;‘}, Ffloat (=) [2e48], fl:;r (*) [zwsi)::{la-dn;da(sycl::_vz::‘.-d<z>)w1}". exeoceopen, 31, e, e, e,
Eft:av:mul(s).rc.lzz ::qz;ue&, float (%) [13;}, float (=) [2848], Flz;t (*) [29&81)::{1a;i’:da{syc1: 1_Vi:i:id<2>)#1}", exoooooefa, 37, 2, 11, e, @,
zi::l;u].(sycl::_\flz:queE;&, float (*) [128], fl'.o:; (=) [2848], Floatn:;‘J [2848]):: {lambda(sycl::_V1::id<2>}#1}", ©xe08ee8fs, 31, e, e, e,
3:r;tlm.ll(s:,l'ci::_\l'.l::('.13;;428., float (*) f]z.;}, float (=) [2848], flz;t (") [2348]}::{13:;“(5)'1:1::_vl::id<2>)1l1}-", exeepeales, 37, e, e, a,
Iﬁmatmul(syci::_vl:::ueue&, float (") {?23}, Float (=) [2048], f:oar (*) [zms])::{ljmtda(sycl::_w::saq))n}"l | exeeeeeie] | 31, a, 8, 8, e, |
3307, T, 7T, T, / /
Kernel IP Number of Active/Stall Events

R,

HPCToolkit's Support for Intel GPU PC Sampling

Goal: collect and attribute PC samples for multiple concurrent application threads

Approach: serialize access by application threads to each GPU tile
« Two kinds of threads

» Application Threads (N per process)
« Monitoring Thread (1 per GPU tile)
« Operation
 Application thread acquires a lock for a GPU tile before launching a GPU kernel

Application thread signals the monitoring thread for the GPU tile
Monitoring thread collects samples for the kernel

Application thread notifies monitoring thread of kernel completion
Monitoring thread flushes samples from the GPU, passes them to appl thread, releases lock
Application thread records the samples

Sampling an Execution of a GPU Kernel on an Intel GPU

Relay PC samples via MPSC channel

A

Sy nckemel_start synckemel_end syncsamples_ready

CPU: Application 3 jvommemmepepn o |
9 Attribute
Thread x e [corpun [aeconmmntismrstamerernet | 1oe | mperieor] 0] cnown []
CPU:PCSampling M~~~ ~~"777° i
Thread y | Idle... Collect PC samples periodically
S

Collect samples E --------------------
&Relay : Idle.... .

+ +

GPU

Timeline

Example

GPU kernel source

Host (CPU) call stack

Device (GPU) call stack

R,

Profile: ompthread.sycloffload.icpx.intelgpu ‘

Metric properties |compute.h X |

1] saa aw

44 ¥else
45 for (int kk = 0 ; kk < kkmax

lemer / double (kkmax) +

d rl[kk] [/ do

42 #endif /* INFORTRAN */
L |

Top-down view | Bottom-up view | Flat view |

TIA|fE ME| A |0l id

compute.h: 46

3.37e+04

GINS:STL_ANY: Sum (1)
4 Experiment Aggregate Metrics 1.3%e+06 100.0%
4 <program root> 1.39e+06 100.0%
4 » main 1.39e+06 100.0%

4 |oop at ompthreads.cc: 70 1.3%e+06 100.0%

4 5 twork(int, int) 1.39e+06 100.0%

4 3 sycl:_Vl:handler:finalize() [libsycl.s0.7.1.0-8] 1.3%e+06 }.00.0%.

4 » piEnqueueKemelLaunch [libpi_level_zero.50] 1.39e+06 100.0%

4 3 urEnqueueKernelLlaunch [libpi_level_zero.so] 1.3%e+06 100.0%

4 3 <gpu kernel> 1.3%9e+06 100.0%

4 5 typeinfo name for twork(int, int):{lambda(sycl:_V1::handler&)#1}:operator()(... 1.39%e+06 100.0%@

4 15'35 » [operator0<syclﬁ:_v1::ftefn<1, trué:v a0 - . 1.39%e+06 99.7%&

4 Ioop-e.tc;a-rnpute.h:.tl.s . 1.39%+06 99.7%!

GINS:STL_PIPE:

9.99%e+04
95.9%e+04
9.9%e+04
9.99e+04
9.99e+04
9.99e+04
9.99%e+04
9.9%e+04
9.99e+04
9.99e+04
9.97e+04
9.97e+04

1.83e+04

Sum (1)
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
99.8%
99.7%

Analyzing Overhead of PC Sampling on Intel GPUs in HPCToolkit

* Test Configuration
* AMD CPU + Intel Data Center GPU Max 1500
* Intel(R) oneAPI DPC++/C++ Compiler 2024.1.0
» Test Case
 Single thread launching 4800 matrix multiplication kernels on one GPU
» Kernel dimensions: 12288x128x2048
» Performance Impact: ~1.3x overhead

zetMetricStreamerOpen) Others

matmul zetMetricStreamerReadData \ /

] 20 40 €0 80 160
Percentage of Total Time (%)
zetMetricStreamerClose

k& Intel’s Level Zero lacks a routine to flush PC Samples: repeatedly open+close instead

Next Steps

* AMD GPUs
* Finish integration and testing of Rocprofiler-sdk in HPCToolkit
* Evaluate measurement overhead for PC sampling and tune implementation
* Add PC sampling support for MI300A once infrastructure available from AMD
* Intel GPUs
* Implement PC sampling of concurrent kernels on Intel GPUs
* support simultaneous execution of multiple kernels without serialization
* lower monitoring overhead
* use gprof-style statistical attribution to kernel launch contexts
* trade off between accuracy and performance cost
» Evaluate PC sampling capabilities on AMD, Intel, and NVIDIA GPUs

R,

