
Register Analysis for General
Instrumentation of AMDGPU Kernels

Hsuan-Heng Wu
Computer Sciences Department

University of Wisconsin

Scalable Tools Workshop
August 12, 2024

 1

Dyninst Scalable Tools Workshop

Motivation

Binary instrumentation is a generally useful technique.

There are currently no binary instrumentation tools for the various
AMD GPU architectures.

So our group started a Dyninst port for these architectures.

2

Dyninst Scalable Tools Workshop

De-Motivation

● Oh, but wait! Conventional wisdom says that it wonʼt work. For
sophisticated kernels like in MIOpen, thereʼs no general purpose
stack and few free registers … no way to do instrumentation.

● And if you look at the various headers in the GPU code objects, this
does seem to be the case.

● Folks at AMD and the national labs all said the same thing.

3

But careful analysis with Dyninst, including register liveness analysis,
and with some clever design, and it appears that is will work.

Dyninst Scalable Tools Workshop

Background - Registers

● AMDGPU implements the SIMT model
● The same kernel is executed by multiple wavefronts, each consists

of 64 threads (lanes)
○ Scalar register of a wavefront shared by all lanes
○ Vector registers of a wavefront have one value per lane
○ A vector register can be used to store 64 scalar register values

● Each wavefront is allocated a fixed number of registers
determined by the compiler

4

Dyninst Scalable Tools Workshop

So How Many Registers Do We Really Need for
Instrumentation?

● Global register versus local register requirement

● A register is globally available if it is free at all points in the code
○ Registers are allocated in multiples of 4 or 8
○ Suitable for values such as stack base & offset and heap base.

● A register is locally available at an instruction if it is dead
○ Suitable for temporary variables used to implement

instrumentation

5

Dyninst Scalable Tools Workshop

So How Many Registers Do We Really Need? Cont’d

The availability of local registers is less of a problem
If stack is available, we can make more registers available by
spilling

So the real question is, how many registers do we need globally
available for instrumentation?

6

Dyninst Scalable Tools Workshop

So How Many Registers Do We Really Need? Cont’d
We want enough global registers to hold
● Stack base address and offset

○ Used for function call and register spilling
● Heap base address and per-thread index

○ Used to collect instrumentation data
○ For efficiency, we want to keep the heap address in registers
○ If we donʼt have enough registers, we can save them in memory and

restore them as necessary
Conventional instrumentation, like we use on CPUs assumes we have
a general purpose stack and heap

7

Dyninst Scalable Tools Workshop

8

Can keep
heap info?

Can keep
scratch ptr?

Has scratch?

Spill regs to load heap
pointer + ftid

Conventional
instrumentation

Slide scratch address
through

dead registers

Can keep
stack offset? Spill regs to load stack

offset + heap pointer +
ftid

Instrumentation Strategy Decision Tree

Yes
No

Has stack?

Dyninst Scalable Tools Workshop

9

Can keep
heap info?

Can keep
scratch ptr?

Has scratch?

Spill regs to load heap
pointer + ftid

Conventional
instrumentation

Slide scratch address
through

dead registers

Can keep
stack offset? Spill regs to load stack

offset + heap pointer +
ftid

Instrumentation Strategy Decision Tree

Yes
No

Has stack?

Can we keep stack info +
 heap info in global registers

Dyninst Scalable Tools Workshop

● Implemented with scratch memory
○ Per wavefront memory allocated on wavefront creation

● Need 1 pair of SGPR to hold the pointer to scratch memory
(scratch pointer)

○ Each SGPR is 32 bit, and AMDGPU uses 48 bit addresses

● Need 1 SGPR to hold the offset from the scratch pointer (stack
offset)

10

Can we keep the stack info in registers

Dyninst Scalable Tools Workshop

Can we keep heap info in registers?
● On launch, we allocate instrumentation memory - a fixed

amount of memory per thread

● 2 SGPRs to hold the base address (heap pointer)

● 1 VGPR to hold a unique thread ID for indexing into the heap
○ Flatten the multi-dimensional tid space to 1-D ftid

11

Dyninst Scalable Tools Workshop

12

Can keep
heap info?

Can keep
scratch ptr?

Has scratch?

Spill regs to load heap
pointer + ftid

Conventional
instrumentation

Slide scratch address
through

dead registers

Can keep
stack offset? Spill regs to load stack

offset + heap pointer +
ftid

Instrumentation Strategy Decision Tree

Yes
No

Has stack?

Save heap pointer and ftid on stack

Dyninst Scalable Tools Workshop

spill space
(heap pointer)

heap pointer

ftid

spill space to create dead register to load ftid

lane id

13

Layout of Scratch Memory for a Wavefront

Stack offset

Scratch pointer

Stack base

0 1 2 3 4 5 … 63

Dyninst Scalable Tools Workshop

14

Can keep
heap info?

Can keep
scratch ptr?

Has scratch?

Spill regs to load heap
pointer + ftid

Conventional
instrumentation

Slide scratch address
through

dead registers

Can keep
stack offset? Spill regs to load stack

offset + heap pointer +
ftid

Instrumentation Strategy Decision Tree

Yes
No

Has stack?

Save stack offset to scratch as well

Dyninst Scalable Tools Workshop

spill space
(heap pointer)

stack
offset

heap pointer
spill

space

ftid

spill space to create dead register to load ftid

Stack offset

lane id

15

Layout of Scratch Memory for a Wavefront

Scratch pointer

Stack base

0 1 2 3 4 5 … 63

Dyninst Scalable Tools Workshop

16

Can keep
heap info?

Can keep
scratch ptr?

Has scratch?

Spill regs to load heap
pointer + ftid

Conventional
instrumentation

Slide scratch address
through

dead registers

Can keep
stack offset? Spill regs to load stack

offset + heap pointer +
ftid

Instrumentation Strategy Decision Tree

Yes
No

Has stack?

Try to slide scratch pointer
through dead registers

Dyninst Scalable Tools Workshop

17

The Sliding Tile Puzzle algorithm

● Goal is to keep the scratch address in registers throughout execution

● Requires 2 SGPRs available at every instruction, though not
necessarily the same ones:
○ Can use dead registers
○ Can spill a register to the stack to free it

● Pass it through free registers
○ Use the control flow to determine where to move the value

Dyninst Scalable Tools Workshop

Registers

Instruction S0 S1 S2 S3

I1 V

I2

I3

…

In

Example: Sliding a Value Through Dead SGPR

 Live

18

Dyninst Scalable Tools Workshop

Approach

Scratch Can

Reserve

Stack

Offset

Can

Reserve

Heap

Percentage of Kernels

Scratch

Enabled

Can

Enable

Scratch

GFX908 GFX90A GFX940

Conventional

instrumentation

✓ ✓ ✓ 0.0% / 0.3% 0.0% / 0.0% 0.0% / 0.0%

X ✓ ✓ ✓ 30.6% / 97.0% 11.2% / 97.4% 9.3% / 95.5%

Spill regs to load

heap pointer and ftid

✓ ✓ X 1.3% / 0.0% 1.0% / 0.0% 1.0% / 1.1%

X ✓ ✓ X 48.5% / 1.6% 68.2% / 1.5% 61.7% / 0.3%

Spill regs to load

stack offset, heap

pointer and ftid

✓ X X 0.0% / 1.0% 0.0% / 0.0% 0.0% / 1.0%

X ✓ X X 2.4% / 0.0% 3.1% / 0.0% 4.6% / 0.3%

Slide Scratch pointer

through dead regs
X X X X 17% / 0.0% 16.2% / 0.0% 23.1% / 2.8%

With Default Reg Allocation / With Increased Reg Alloc

Dyninst Scalable Tools Workshop

20

Questions?

Dyninst Scalable Tools Workshop

● As long as we can keep the stack base address in globally
available registers
○ Save stack offset, heap pointer and ftid values at fixed offset

relative to stack base
○ Spill registers at instrumentation site to create dead registers

to load these values
● Otherwise, we try to slide the scratch pointer around through

dead registers

21

The minimum global register requirement

