
LLNL-PRES-850268

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-

AC52-07NA27344. Lawrence L ivermore National Secur ity, LLC

Thicket:
Growth of the Heterogeneous
Performance Experiment Forest

Scalable Tools Workshop

Stephanie Brink, Dewi Yokelson, Michael McKinsey, David Boehme, 12-15 August 2024

Vanessa Lama, Jakob Luettgau, Kate Isaacs, Michela Taufer, Olga Pearce

Connor Scully Allison , Ian Lumsden, Daryl Hawkins, Treece Burgess,

2
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

▪ HPC software and hardware are increasingly complex. Need to understand:
— Strong scaling and weak scaling of applications
— Impact of application parameters on performance
— Impact of choice of compilers and optimization levels
— Performance on different hardware architectures (e.g., CPUs, GPUs)
— Different tools to measure different aspects of application performance

Challenge: Performance analysis in complex HPC ecosystem

Goal: Analyze and visualize performance data from different sources and types

3
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

Our big picture solution for analyzing and visualizing performance
data from different sources and type

https://github.com/LLNL/thicket
https://github.com/LLNL/thicket-tutorial

4
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

What do profiling tools collect per run? e.g.,

2) Performance data1) Call Tree

▪ Batch submission (user, launch date)

▪ Hardware info (platform)

▪ Build info (compiler versions/flags)

▪ Runtime info (problem parameters,
number of MPI ranks used)

▪ Time, FLOPS

▪ Cache misses

▪ Memory accesses

3) Metadata per run

5
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

Performance metrics

Metadata

Metadata

Use Thicket to compose performance profiles in Python

24

16

Performance metrics

6
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

Performance metrics
Metadata

Use Thicket to compose performance profiles in Python

24

24
16

Compose functions
w/matching call trees

Performance metrics

Performance metrics
1

1

Metadata

16

7
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

Metadata

Performance metrics
Metadata

Use Thicket to compose performance profiles in Python

24
16

Compose functions
w/matching call trees

Compose metadata
with all fieldsPerformance metrics

Performance metrics
1

2

2
Metadata

1

24

16

8
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

Metadata

Performance metrics
Metadata

Use Thicket to compose performance profiles in Python

24
16

Compose functions
w/matching call trees

Compose metadata
with all fields

Aggregate statistics
(order reduction)

Performance metrics

Performance metrics

20

1

2

3

3

Metadata
2

1

24

16

9
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

Thicket components are interconnected

Performance metrics

Metadata

Filtered Performance metrics

Filtered Metadata

Jon
Bob

lassen
lassen

Bob lassen

Filter on metadata:
platform==“lassen" &&

user==“Bob”

Metadata fields useful for understanding
and manipulating thicket object!

10
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

▪ Compose data from diff. sources and types
— Different scaling (e.g., strong, weak)
— Different application parameters
— Different compilers and optimization levels
— Different hardware types (e.g., CPUs, GPUs)
— Different performance tools

Thicket enables exploratory data analysis of multi-run data

11
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

▪ Perform analysis on the thicket of runs
— Manipulate the set of data
— Visualize the dataset
— Perform analysis on the data
— Model data
— Leverage third-party tools in the Python ecosystem

Thicket enables exploratory data analysis of multi-run data

▪ Compose data from diff. sources and types
— Different scaling (e.g., strong, weak)
— Different application parameters
— Different compilers and optimization levels
— Different hardware types (e.g., CPUs, GPUs)
— Different performance tools

12
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

▪ Open-source suite of loop-based kernels commonly found in HPC applications
showcasing performance of different programming models on different hardware

▪ 560 runs/profiles:
— 2 clusters (CPU, CPU+GPU)
— 4 problem sizes
— 3 compilers, 4 optimizations

Case Study 1: RAJA Performance Suite

— 3 programming models (sequential, OpenMP, CUDA)
— 3 performance tools (Caliper, PAPI, Nsight Compute)

[1M, 2M, 4M, 8M]

[1M, 2M, 4M, 8M]

[1M, 2M, 4M, 8M]

[1M, 2M, 4M, 8M]

[1M, 2M, 4M, 8M]

13
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

Use Thicket to compose multi-platform, multi-tool data
Thicket object composed of 2 profiles run on CPU

Thicket object composed of 2 profiles run on GPU

CPU GPU

1M

4M

1M

4M

1M

4M

1M

4M

1M

4M

1M

4M

14
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

Analyze multi-architecture/multi-tool data

▪ Dataset: 4 types of profiles side-by-side to compare CPU to GPU performance
 Basic CPU metrics from Caliper

 Top-down metrics from Caliper/PAPI

 GPU runtime from Caliper

 GPU metrics from Nsight Compute

▪ Examples of analysis:
— Compute CPU/GPU speedup
— Correlate memory and compute usage on the CPU vs. GPU

1 2 3 4

1

2

3

4

8M

8M

CPU CPU top-down GPU GPU Nsight Compute

Node
Problem

size

15
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

Manipulate: Filter using call path query

Filter on call path:
(1) Node named

“Base_CUDA”

Input call tree Output call tree

I Lumsden et al. “Enabling Call Path Querying in Hatchet to Identify
Performance Bottlenecks in Scientific Applications”, e-Science 2022

16
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

Input call tree Output call tree

Manipulate: Filter using call path query

Filter on call path:
(1) Node named

“Base_CUDA”
(2) Node with “block_128”

in name (and any
nodes in between)

I Lumsden et al. “Enabling Call Path Querying in Hatchet to Identify
Performance Bottlenecks in Scientific Applications”, e-Science 2022

17
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

Visualize: Intel CPU top-down analysis

▪ Top-down analysis uses HW counters in a
hierarchy to identify bottlenecks*

▪ Use Caliper’s top-down module to derive
top-down metrics for call-tree regions

▪ Thicket’s tree+table visualization shows
top-down metrics as stacked bar charts,
each bar is a profile

— Apps_VOL3D has the highest retiring rates

— Lcals_HYDRO and Stream_DOT become
more backend bound as problem size grows

*

18
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

Use third-party Python libraries, e.g., Scikit-learn clustering

1. Select data of interest

— Filter 8M problem size

— Use query language to
extract all implementations
of the Stream kernel

2. (optional) Normalize data

3. Apply scikit-learn
clustering to top-down
analysis metrics of runs
with different compiler
optimization levels

Optimization Level K-Means Clusters

-O0
-O1
-O2
-O3

0
1
2

Stream_ADD
Stream_COPY
Stream_DOT
Stream_MUL
Stream_TRIAD

Kernels

19
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

▪ MARBL is a next-generation multi-physics code developed at LLNL

▪ 60 runs/profiles:
— 2 clusters (rztopaz, AWS ParallelCluster)
— 2 MPI libraries (impi, openmpi)
— 6 node/rank counts
— 5 repeat runs per config

Case Study 2: MARBL multi-physics code

20
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

1. Use groupby(mpi.world.size) to generate unique subsets of
data which are repeated runs; compute noise

2. Compose runs on different platforms and at different scales

impi and OpenMPI scale
well up to 16 nodes

Manipulate: Compute noise and scaling

3. Generate strong scaling plot with matplotlib
— Deviation shown in shaded region, dots are average

of 5 runs

21
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

Extra-P derives an analytical performance model from an ensemble of profiles covering one
or more modeling parameters http://github.com/extra-p/extrap

▪ Select functions of
interest

▪ Call Extra-P to model
scaling on different
hardware types

Model: Use third-party Python library, Extra-P

http://github.com/extra-p/extrap

22
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

▪ Thicket’s interactive parallel coordinates plot shows relationships between metadata
variables, and between metadata and performance data

Visualize metadata with parallel coordinates plot

num elems max
avg time (inc)arch

walltime

num_elems_max

mpi.world.size

mpi.world.size

23
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

Determine which parallel algorithm is executing
from the performance data

Anomaly Removal Techniques for Performance Data:
1 Samples that are statistical outliers based on

metadata parameter grouping.
2 Sets of samples where the runtime does not scale.

1

2

▪ Why use Thicket to interface with PyTorch
to provide neural network analysis of
performance data?

24
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

Selecting Subsets of Data in Thicket

▪ Easily select subsets of
data in thicket
performance table

▪ K-Fold Cross Validation
helps prevent overfitting
on training data

▪ Selecting also useful for
varying input features to
training phase

25
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

Neural Network Model and Accuracy

▪ Labeled Thicket data is used to train a
neural network

▪ Unlabeled data passed in for classification

26
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

Can we observe performance fluctuations over time?

main

lulesh.cycle

LagrangeLeapFrog

fine-grained, function-based measurement (e.g., execution time)

coarse-grained, iteration-based measurement (e.g. memory utilization)

lulesh.cycle

LagrangeLeapFrog

time iteration 0 iteration 1

Pattern Constant Phased Dynamic Sporadic

Score 0.0-0.2 0.2-0.4 0.4-0.6 0.6-1.0

Symbol → ⤳ ⇝ ↝

𝑃𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑡 = 1 −
σ𝑡=0
𝑇 𝑀𝑡

σ𝑡=0
𝑇 𝑚𝑎𝑥0<𝑡<𝑇𝑀𝑡

▪ Thicket can then
categorize
temporal
patterns [1]:

[1] I.B. Peng, I. Karlin, M. B. Gokhale, K.
Shoga, M. P. LeGendre, and T. Gamblin. A
holistic view of memory utilization on hpc
systems: Current and future trends.
Proceedings of the International
Symposium on Memory Systems, 2021.

▪ Caliper collects
metrics at set
intervals

27
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

Timeseries metrics visualizations

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

350

Function: main lulesh.cycle LagrangeLeapFrog CalcTimeConstraintsForElems LagrangeElements

ApplyMaterialPropertiesForElems EvalEOSForElems CalcEnergyForElems CalcLagrangeElements

CalcKinematicsForElems CalcQForElems CalcMonotonicQForElems LagrangeNodal CalcForceForNodes

CalcVolumeForceForElems CalcHourglassControlForElems CalcFBHourglassForceForElems IntegrateStressForElems

TimeIncrement

Iteration

E
x

e
cu

ti
o

n
 T

im
e

 (
s)

▪ Display pattern symbol and
temporal score as part of
the call tree

▪ Use python plotting
libraries to create a more
granular visualization

28
LLNL-PRES-850268

Documentation: thicket.readthedocs.io

Thicket is a toolkit for exploratory data analysis of multi-run data

https://github.com/LLNL/thicket
https://github.com/LLNL/thicket-tutorial

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

	Slide 1: Thicket: Growth of the Heterogeneous Performance Experiment Forest
	Slide 2: Challenge: Performance analysis in complex HPC ecosystem
	Slide 3: Our big picture solution for analyzing and visualizing performance data from different sources and type
	Slide 4: What do profiling tools collect per run? e.g.,
	Slide 5: Use Thicket to compose performance profiles in Python
	Slide 6: Use Thicket to compose performance profiles in Python
	Slide 7: Use Thicket to compose performance profiles in Python
	Slide 8: Use Thicket to compose performance profiles in Python
	Slide 9: Thicket components are interconnected
	Slide 10: Thicket enables exploratory data analysis of multi-run data
	Slide 11: Thicket enables exploratory data analysis of multi-run data
	Slide 12: Case Study 1: RAJA Performance Suite
	Slide 13: Use Thicket to compose multi-platform, multi-tool data
	Slide 14: Analyze multi-architecture/multi-tool data
	Slide 15: Manipulate: Filter using call path query
	Slide 16: Manipulate: Filter using call path query
	Slide 17: Visualize: Intel CPU top-down analysis
	Slide 18: Use third-party Python libraries, e.g., Scikit-learn clustering
	Slide 19: Case Study 2: MARBL multi-physics code
	Slide 20: Manipulate: Compute noise and scaling
	Slide 21: Model: Use third-party Python library, Extra-P
	Slide 22: Visualize metadata with parallel coordinates plot
	Slide 23: Determine which parallel algorithm is executing from the performance data
	Slide 24: Selecting Subsets of Data in Thicket
	Slide 25: Neural Network Model and Accuracy
	Slide 26: Can we observe performance fluctuations over time?
	Slide 27: Timeseries metrics visualizations
	Slide 28: Thicket is a toolkit for exploratory data analysis of multi-run data
	Slide 29

