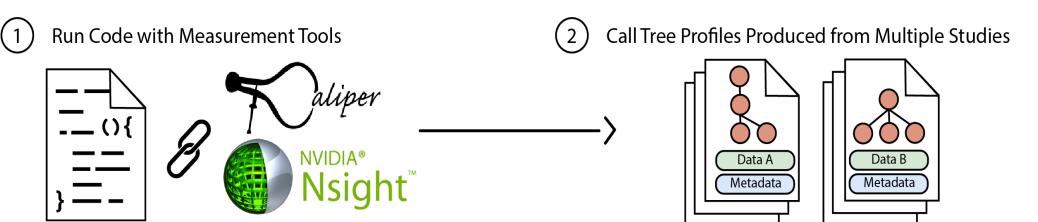
Thicket: Growth of the Heterogeneous Performance Experiment Forest

Scalable Tools Workshop

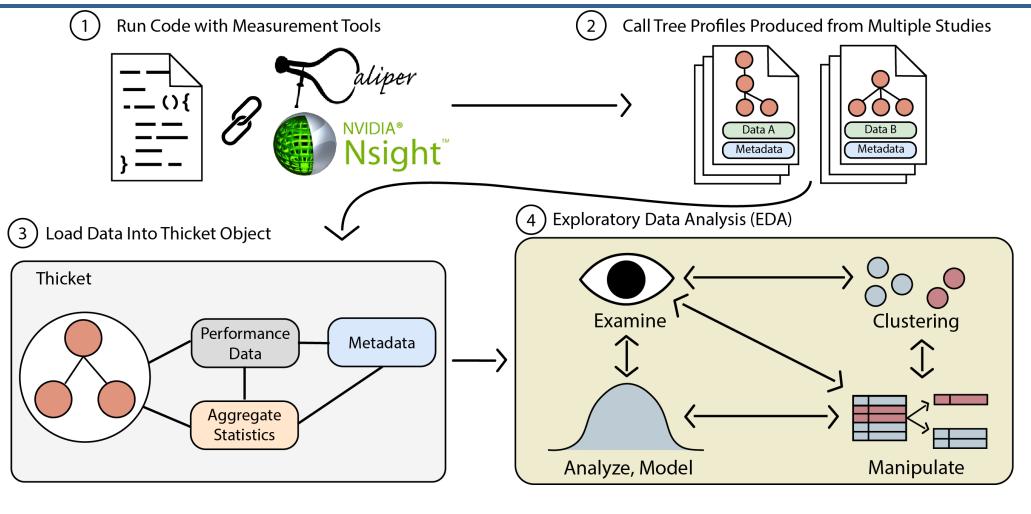
12-15 August 2024

Stephanie Brink, <u>Dewi Yokelson</u>, Michael McKinsey, <u>David Boehme</u>, Connor Scully Allison, Ian Lumsden, Daryl Hawkins, Treece Burgess, Vanessa Lama, Jakob Luettgau, Kate Isaacs, Michela Taufer, Olga Pearce


LLNL-PRES-850268 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Lawrence Livermore National Laboratory

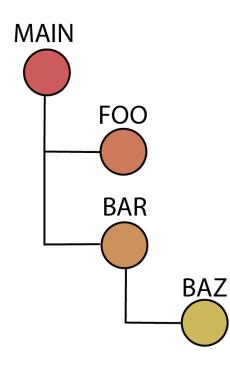
Challenge: Performance analysis in complex HPC ecosystem


- HPC software and hardware are increasingly complex. Need to understand:
 - Strong scaling and weak scaling of applications
 - Impact of application parameters on performance
 - Impact of choice of compilers and optimization levels
 - Performance on different hardware architectures (e.g., CPUs, GPUs)
 - Different tools to measure different aspects of application performance

Goal: Analyze and visualize performance data from different sources and types

Our big picture solution for analyzing and visualizing performance data from different sources and type

Documentation: thicket.readthedocs.io wrence Livermore National Laboratory


LLNL-PRES-850268

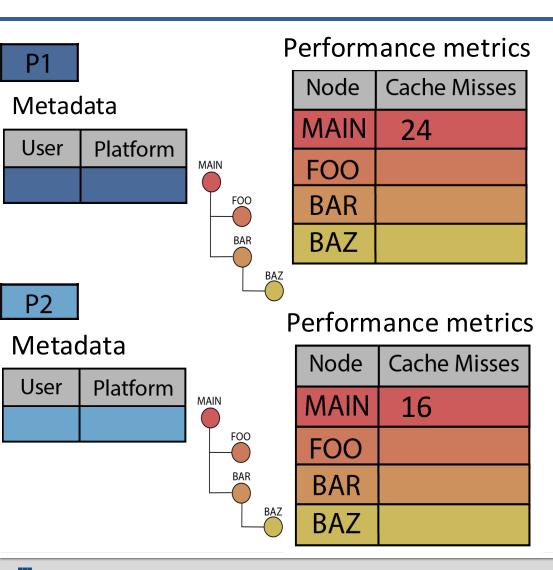
https://github.com/LLNL/thicket https://github.com/LLNL/thicket-tutorial

What do profiling tools collect per run?

1) Call Tree

Node	Cache Misses
MAIN	
FOO	
BAR	
BAZ	

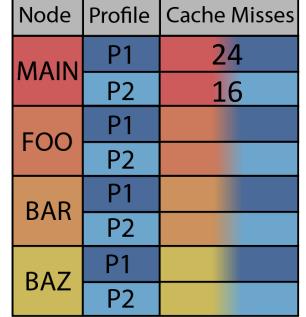
- Time, FLOPS
- Cache misses
- Memory accesses


3) Metadata per run

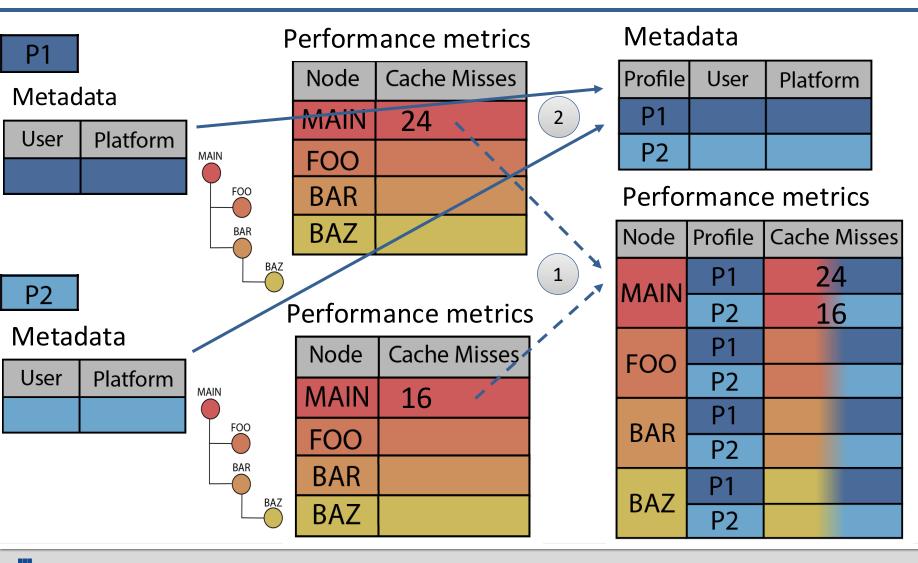
User	Platform

- Batch submission (user, launch date)
- Hardware info (platform)
- Build info (compiler versions/flags)
- Runtime info (problem parameters, number of MPI ranks used)

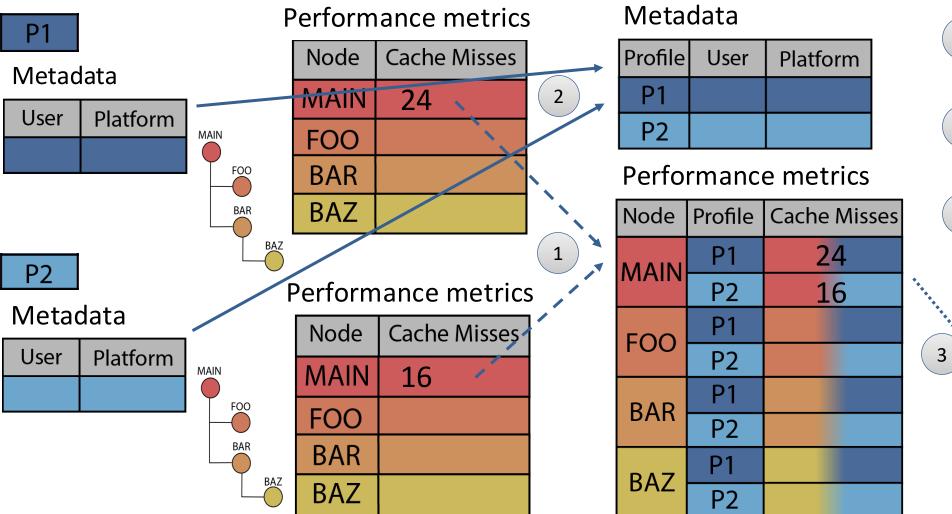



Compose functions w/matching call trees

rence Livermore National Laboratory


LLNL-PRES-850268

Performance metrics


Compose functions w/matching call trees

Compose metadata 2 with all fields

rence Livermore National Laboratory Documentation: thicket.readthedocs.io

- Compose functions w/matching call trees
- 2 Compose metadata with all fields
- Aggregate statistics (order reduction)

Node	Avg. Cache Misses
MAIN	20
FOO	
BAR	
BAZ	

rence Livermore National Laboratory

Thicket components are interconnected

Metadata

Profile	User	Platform
P1	Jon	lassen
P2	Bob	lassen

Performance metrics

Node	Profile	Cache Misses
MAIN	P1	
MAIN	P2	
	P1	
FOO	P2	
BAR	P1	
DAN	P2	
	P1	
BAZ	P2	

Filter on metadata: platform=="lassen" && user=="Bob"

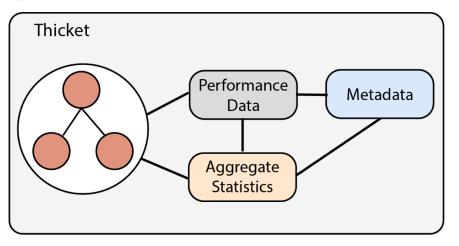
Filtered Metadata

Profile	User	Platform
P2	Bob	lassen

Filtered Performance metrics

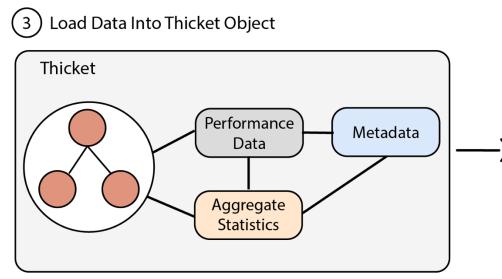
Node	Profile	Cache Misses
MAIN	P2	
FOO	P2	
BAR	P2	
BAZ	P2	

Metadata fields useful for understanding and manipulating thicket object!

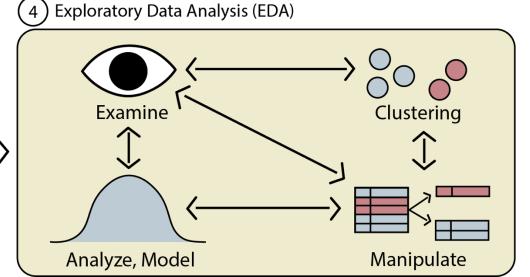


Jumentation: thicket.readthedocs.io

Thicket enables exploratory data analysis of multi-run data



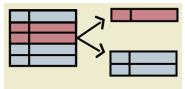
- Compose data from diff. sources and types
 - Different scaling (e.g., strong, weak)
 - Different application parameters
 - Different compilers and optimization levels
 - Different hardware types (e.g., CPUs, GPUs)
 - Different performance tools



Thicket enables exploratory data analysis of multi-run data

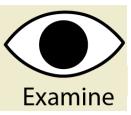
- Compose data from diff. sources and types
 - Different scaling (e.g., strong, weak)
 - Different application parameters
 - Different compilers and optimization levels
 - Different hardware types (e.g., CPUs, GPUs)
 - Different performance tools

- Perform analysis on the thicket of runs
 - Manipulate the set of data
 - Visualize the dataset
 - Perform analysis on the data
 - Model data
 - Leverage third-party tools in the Python ecosystem


Case Study 1: RAJA Performance Suite

- Open-source suite of loop-based kernels commonly found in HPC applications showcasing performance of different programming models on different hardware
- 560 runs/profiles:
 - 2 clusters (CPU, CPU+GPU)
 - 4 problem sizes
 - 3 compilers, 4 optimizations
- 3 programming models (sequential, OpenMP, CUDA)
- 3 performance tools (Caliper, PAPI, Nsight Compute)

	cluster	systype build	problem size	compiler	compiler optimizations	omp num threads	cuda compiler	block sizes	RAJA variant	#profiles
0	quartz	toss_3_x86_64_ib	[1M, 2M, 4M, 8M]	clang++-9.0.0	[-00, -01, -02, -03]	1	N/A	N/A	Sequential	160
1	quartz	toss_3_x86_64_ib	[1M, 2M, 4M, 8M]	g++-8.3.1	[-00, -01, -02, -03]	1	N/A	N/A	Sequential	160
2	quartz	toss_3_x86_64_ib	[1M, 2M, 4M, 8M]	clang++-9.0.0	-00	72	N/A	N/A	OpenMP	40
3	quartz	toss_3_x86_64_ib	[1M, 2M, 4M, 8M]	g++-8.3.1	-00	72	N/A	N/A	OpenMP	40
4	lassen	blueos_3_ppc64le_ib_p9	[1M, 2M, 4M, 8M]	xlc++_r- 16.1.1.12	-00	1	nvcc-11.2.152	[128, 256, 512, 1024]	CUDA	160


Use Thicket to compose multi-platform, multi-tool data

Manipulate

Thicket object composed of 2 profiles run on CPU

			•••••									
				time (exc)	Reps	Retiring	Backend bound					
	node	problem_	size									
	ACCUMULATION 2D	1	M 0.2	204583	100	0.144928	0.783786					
	ACCOMOLATION_3D	4	M 0.	795511	100	0.139002	0.788017]				
		1	M 0.0	67061	100	0.402238	0.510525		Thicket object composed of	r 2 profile	es run on G	JPU
	Apps_VOL3D	4	M 0.2	41508	100	0.400775	0.515976	tir (gp		gpudram_	throughput sn	nthroughput
						node	e problem_si	_				
			Anne		ACC11		1M	0.0074	78 70.689752		46.724767	7.330745
			Hipps_	IODAL_	_ACCO	MULATION_3D	4M	0.0269	51 74.275834		51.257993	7.688628
							1M	0.0060	28 81.012826		67.751194	35.676942
						Apps_VOL3D	4M	0.0214	22 91.929933		70.122011	35.386470
						CPU			GPU 🖌			
					time (exc) F	Reps Retiring	Backend bound	time (gpu) g	gpucompute_memory_throughput gpudra	m_throughput	smthroughput	
		node	problem_si	ze								
	Apps NODAL ACCUMU	LATION 3D	1M	0.20	04583	100 0.144928	0.783786	0.007478	70.689752	46.724767	7.330745]
RAJ∀	· · · · · · · · · · · · · · · · · · ·		4M		95511	100 0.139002	0.788017	0.026951	74.275834	51.257993	7.688628	
	ACCUMULATION_3D Apps_VOL3D Apps_NODAL_ACCUMU	ops_VOL3D	1M		67061	100 0.402238	0.510525	0.006028	81.012826	67.751194	35.676942	
		-	4M	0.24	11508	100 0.400775	0.515976	0.021422	91.929933	70.122011	35.386470	al Nuclear Security Administration
E112-FRE3-	000200											

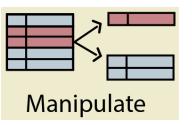
Analyze multi-architecture/multi-tool data

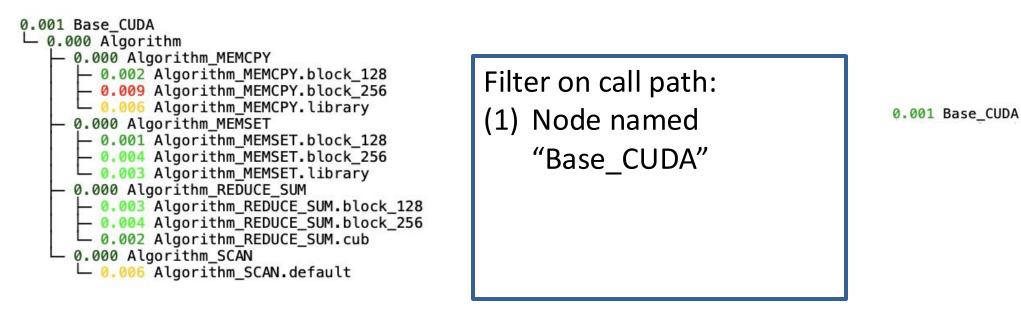
 $\mathbf{\Lambda}$

- Dataset: 4 types of profiles side-by-side to compare CPU to GPU performance 1
 - Basic CPU metrics from Caliper
 - Top-down metrics from Caliper/PAPI 2
 - GPU runtime from Caliper 3
 - **GPU** metrics from Nsight Compute 4
- Examples of analysis:

LLNL-PRES-850268

- Compute CPU/GPU speedup
- Correlate memory and compute usage on the CPU vs. GPU


2


											Der	
		CPU			CPU top-down GPU		GPU N	erived				
	Problem	time (exc)	Bytes/Rep	Flops/Rep	Retiring	Backend bound	time (gpu)	gpucompute_memory_throughput	gpudram_throughput	smthroughput	smwarps_active	speedup
Node	size											
Apps_VOL3D	8M	0.498815	282109496	632421288	0.377843	0.540604	0.040761	93.742058	72.140428	36.206767	54.459589	12.237556
Lcals_HYDRO_1D	8M	2.077556	201326600	41943040	0.032965	0.909545	0.242928	92.944968	92.944968	6.595714	95.266148	8.552147
Lawrence Li	ivermore Nation	nal Laborato	ry Do	ocumen	tation	thicket.re	eadtheo	docs.io				S 14

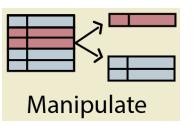
Δ

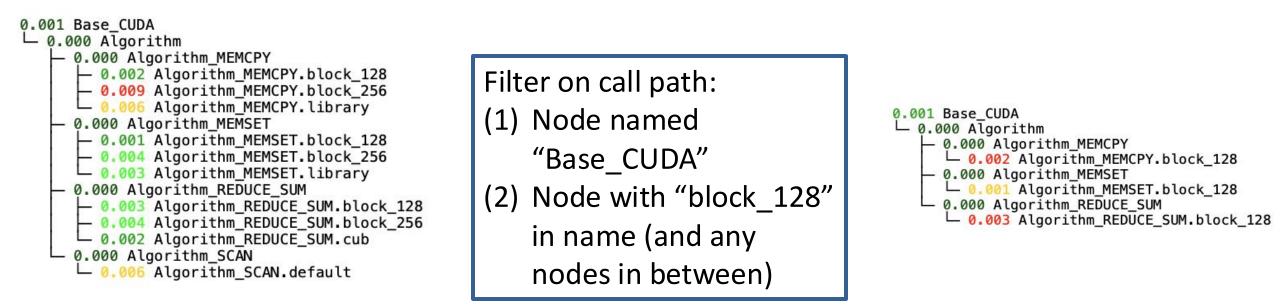
3

Manipulate: Filter using call path query

Input call tree

Output call tree

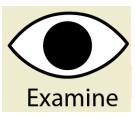

I Lumsden et al. "Enabling Call Path Querying in Hatchet to Identify Performance Bottlenecks in Scientific Applications", e-Science 2022



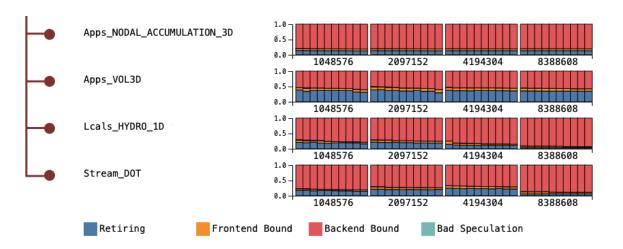
RAJV

Manipulate: Filter using call path query

Input call tree


Output call tree

I Lumsden et al. "Enabling Call Path Querying in Hatchet to Identify Performance Bottlenecks in Scientific Applications", e-Science 2022

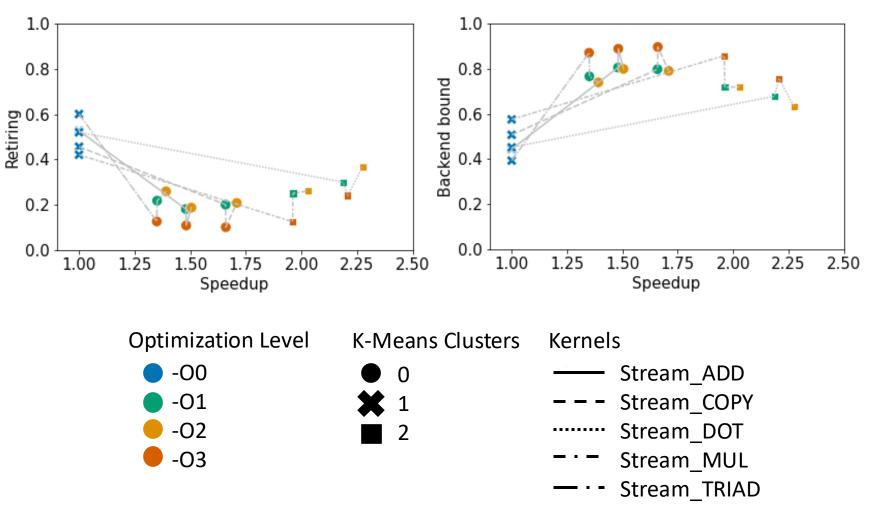

Visualize: Intel CPU top-down analysis

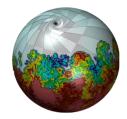
					Pipeline	Slots							
	N	lot Stalled						St	alled				
Retir	ing	Bad Speculation			Front End Bound			d Back End Bound					d
Base NS- ROM Branch Machine Mspredict Dear				Fetch Latency Bandwidth				60	re Bound	Memory Bound			
Other FP-Arith				ITLB Miss	Branch Resteers Icache Miss	Fetch src 1	Fetch src 2	Divider	Execution ports Utilization	L1 Bound Stores Bound	L2 Bound	L3 Bound	Ext. Memory Bound
Vector									0 ports 1 or 2 ports 3+ ports				Latency Mem Bandwidth

RAIV

- Top-down analysis uses HW counters in a hierarchy to identify bottlenecks*
- Use Caliper's top-down module to derive top-down metrics for call-tree regions

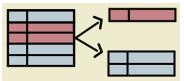
- Thicket's tree+table visualization shows top-down metrics as stacked bar charts, each bar is a profile
 - Apps_VOL3D has the highest retiring rates
 - Lcals_HYDRO and Stream_DOT become more backend bound as problem size grows


[★] Yasin, A.: A Top-Down Method for Performance Analysis and Counters Architecture. In: 2014 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). pp. 35-44. IEEE, CA, USA (Mar 2014).


Use third-party Python libraries, e.g., Scikit-learn clustering Clustering

- Select data of interest 1
 - Filter 8M problem size
 - Use query language to extract all implementations of the Stream kernel
- (optional) Normalize data 2.
- Apply scikit-learn 3. clustering to top-down analysis metrics of runs with different compiler optimization levels

-PRES-850268



- MARBL is a next-generation multi-physics code developed at LLNL
- 60 runs/profiles:
 - 2 clusters (rztopaz, AWS ParallelCluster)
 - 2 MPI libraries (impi, openmpi)
 - 6 node/rank counts
 - 5 repeat runs per config

	cluster	ccompiler	mpi	version	numhosts	mpi.world.size	#profiles
0	ip	/usr/tce/packages/clang/clang-9.0.0	impi	v1.1.0-203-gcb0efb3	[1, 2, 4, 8, 16, 32]	[36, 72, 144, 288, 576, 1152]	30
1	rztopaz	/usr/tce/packages/clang/clang-9.0.0	openmpi	v1.1.0-201-g891eaf1	[1, 2, 4, 8, 16, 32]	[36, 72, 144, 288, 576, 1152]	30

Manipulate: Compute noise and scaling

Manipulate

main

main

main

main

main

CTS1-OpenMPI

Total time

55318.808836

55110.656885

55155.581578

55139.134916

cMarbl (lag) -- Triple-Pt-3D -- Node-to-Node Strong Scaling - timeStepLoop

profile

8335957980556391465 55013.682102

-7335101512240609798

-843517585394879415

7720382918482619866

8293335926964337960

node

2²

2¹

cycle (s) [log2

time per 2-2

2-1

2-3

2-4

2⁰

2¹

2²

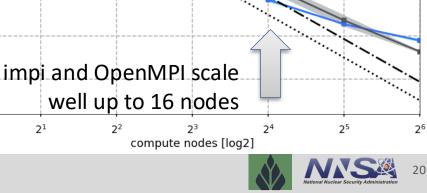
{'name': 'main', 'type': 'function'}

name mpi.world.size

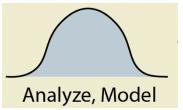
C5n.18xlarge-IntelMPI-ideal C5n.18xlarge-IntelMPI CTS1-OpenMPI-ideal

36

36

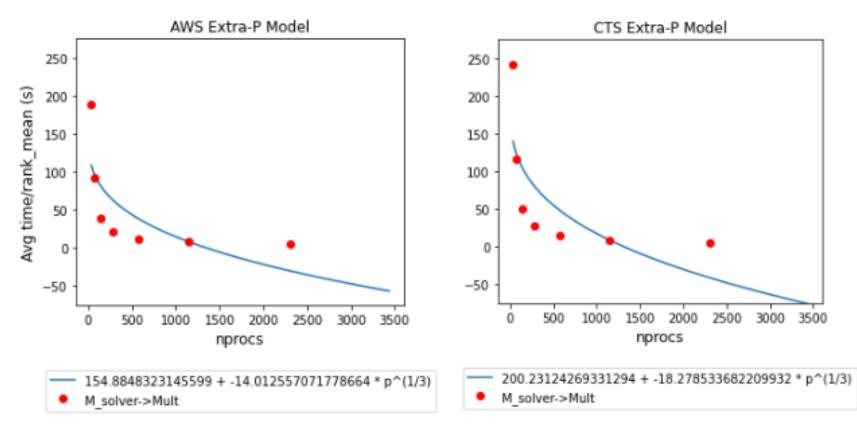

36

36


36

•		Total time	name	mpi.world.size	╞
node	profile				
	-8554409769265002864	58036.664552	main	144	l
	-7335101512240609798	55318.808836	main	36	l
	-6029692086108825020	156984.246813	main	2304	l
	-5606382734792961361	64122.371533	main	288	l
(nomely impired through its potion)	-4058809097109060732	155040.998627	main	2304	l
{'name': 'main', 'type': 'function'}	-3193575964635936033	71010.504038	main	576	l
	-2978339073585311581	55910.708449	main	72	l
	-2939704488254773514	157934.204076	main	2304	l
	-2771797711381234985	56893.512948	main	144	
	-2638513839856695106	97432.260966	main	1152	

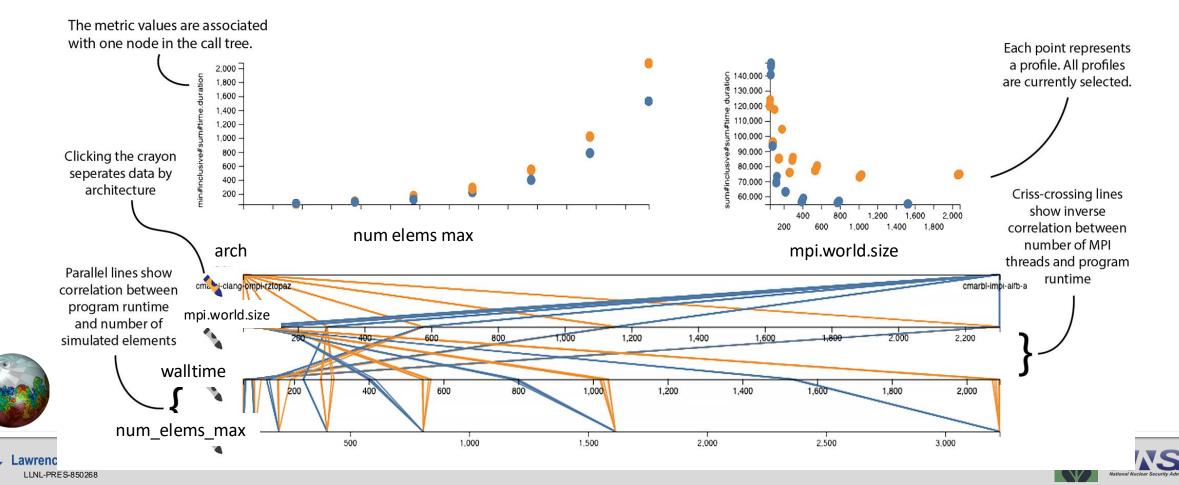
- Use groupby(mpi.world.size) to generate unique subsets of data which are repeated runs; compute noise
- Compose runs on different platforms and at different scales 2.
 - Generate strong scaling plot with matplotlib 3.
 - Deviation shown in shaded region, dots are average of 5 runs

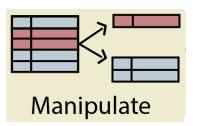


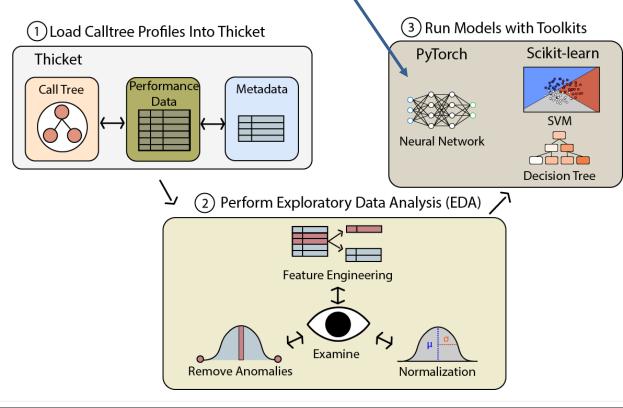
Model: Use third-party Python library, Extra-P

Extra-P derives an analytical performance model from an ensemble of profiles covering one http://github.com/extra-p/extrap or more modeling parameters


- Select functions of interest
- Call Extra-P to model scaling on different hardware types




Visualize metadata with parallel coordinates plot


 Thicket's interactive parallel coordinates plot shows relationships between metadata variables, and between metadata and performance data

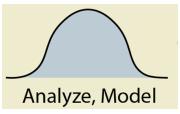
Determine which parallel algorithm is executing from the performance data



 Why use Thicket to interface with PyTorch to provide neural network analysis of performance data?

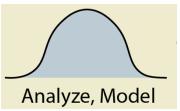
Anomaly Removal Techniques for Performance Data:

- Samples that are statistical outliers based on metadata parameter grouping.
- 2 Sets of samples where the runtime does not scale.

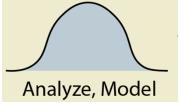


Documentation: thicket.readthedocs.io ce Livermore National Laboratory

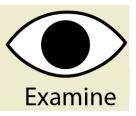
Selecting Subsets of Data in Thicket


- Easily select subsets of data in thicket performance table
- **K-Fold Cross Validation** helps prevent overfitting on training data
- Selecting also useful for varying input features to training phase

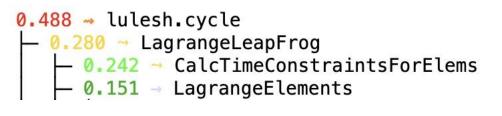
Thicket				Accessing a feature in the Performance Data Thicket.DataFrame.loc[Thicket.get_node("comp_large"), "Avg time/rank"] How to split train/test data using K-Fold idx_splits = sklearn.KFold(n_splits=3).split(Thicket.DataFrame) train_idx_1, test_idx_1 = next(idx_splits) # Fold 1 train_idx_2, test_idx_2 = next(idx_splits) # Fold 2 train_idx_3, test_idx_3 = next(idx_splits) # Fold 3						Frame)	
Fold 1/3						Fold 2/3			Fold	3/3	
Node	Profile	Avg time/rank	Variance time/rank	Node	Profile	Avg time/rank	Variance time/rank	Node	Profile	Avg time/rank	Variance time/rank
comp_large	1	0.06	0.00	comp_large	1	0.06	0.00	comp_large	1	0.06	0.00
	2	1.18	0.01		2	1.18	0.01		2	1.18	0.01
	3	2.76	0.00		3	2.76	0.00		3	2.76	0.00
	4	1.34	40.03		4	1.34	40.03		4	1.34	40.03
	5	1.57	0.00		5	1.57	0.00		5	1.57	0.00
	6	6.00	0.00		6	6.00	0.00		6	6.00	0.00
comp/comm	1	0.85	0.00	comp/comm	1	0.85	0.00	comp/comm	1	0.85	0.00
	2	13.30	0.65		2	13.30	0.65		2	13.30	0.65
	3	0.11	2.67		3	0.11	2.67		3	0.11	2.67
	4	0.05	0.55		4	0.05	0.55		4	0.05	0.55
	5	10.09	0.22		5	10.09	0.22		5	10.09	0.22
	6	5.71	0.19		6	5.71	0.19		6	5.71	0.19


Neural Network Model and Accuracy

Can we observe performance fluctuations over time?

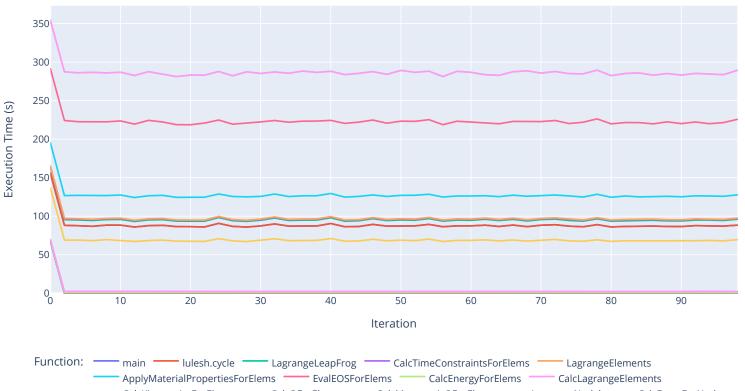


Caliper collects coarse-grained, iteration-based measurement (e.g. memory utilization) metrics at set iteration 0 iteration 1 time intervals main lulesh.cycle lulesh.cycle Thicket can then LagrangeLeapFrog LagrangeLeapFrog categorize temporal fine-grained, function-based measurement (e.g., execution time) patterns [1]: $\frac{\sum_{t=0}^{T} M_t}{\max_{0 \le t \le T} M_t}$ $P_{temporal}(t) =$ $\sum_{t=0}^{T}$ Phased Sporadic Constant Dynamic Pattern 0.0-0.2 0.2 - 0.40.4-0.6 0.6 - 1.0Score [1] I.B. Peng, I. Karlin, M. B. Gokhale, K. Shoga, M. P. LeGendre, and T. Gamblin. A holistic view of memory utilization on hpc Symbol \rightarrow \rightarrow 2 systems: Current and future trends. -₩> Proceedings of the International Symposium on Memory Systems, 2021.


KALLER SCURING AUTO

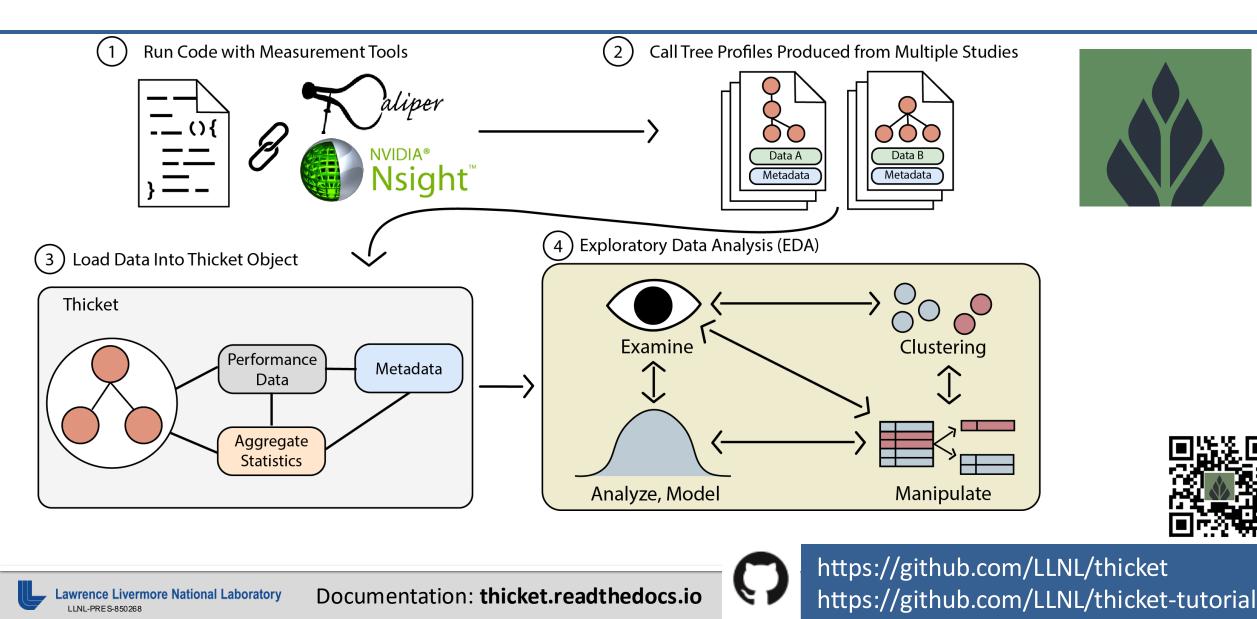
awrence Livermore National Laboratory

Timeseries metrics visualizations



- Display pattern symbol and temporal score as part of the call tree
- Use python plotting libraries to create a more granular visualization

67788.343 → lulesh.cycle - 8168.648 LagrangeLeapFrog - 8783.894 CalcTimeConstraintsForElem


- 398433.500 LagrangeElements

CalcKinematicsForElems CalcQForElems CalcMonotonicQForElems LagrangeNodal CalcForceForNodes CalcVolumeForceForElems CalcHourglassControlForElems CalcFBHourglassForceForElems IntegrateStressForElems TimeIncrement

Thicket is a toolkit for exploratory data analysis of multi-run data

Center for Applied Scientific Computing

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to anyspecific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.