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Documentation: thicket.readthedocs.io

▪ HPC software and hardware are increasingly complex. Need to understand:
— Strong scaling and weak scaling of applications
— Impact of application parameters on performance
— Impact of choice of compilers and optimization levels
— Performance on different hardware architectures (e.g., CPUs, GPUs)
— Different tools to measure different aspects of application performance

Challenge: Performance analysis in complex HPC ecosystem

Goal: Analyze and visualize performance data from different sources and types
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Documentation: thicket.readthedocs.io

Our big picture solution for analyzing and visualizing performance 
data from different sources and type

https://github.com/LLNL/thicket
https://github.com/LLNL/thicket-tutorial
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What do profiling tools collect per run?          e.g.,

2) Performance data1) Call Tree

▪ Batch submission (user, launch date)

▪ Hardware info (platform)

▪ Build info (compiler versions/flags)

▪ Runtime info (problem parameters, 
number of MPI ranks used)

▪ Time, FLOPS

▪ Cache misses

▪ Memory accesses

3) Metadata per run
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Performance metrics

Metadata

Metadata

Use Thicket to compose performance profiles in Python

24

16

Performance metrics
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Performance metrics
Metadata

Use Thicket to compose performance profiles in Python
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Compose functions 
w/matching call trees
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Metadata

Performance metrics
Metadata

Use Thicket to compose performance profiles in Python
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Metadata

Performance metrics
Metadata

Use Thicket to compose performance profiles in Python

24
16

Compose functions 
w/matching call trees

Compose metadata 
with all fields

Aggregate statistics
(order reduction)

Performance metrics

Performance metrics
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Thicket components are interconnected

Performance metrics

Metadata

Filtered Performance metrics

Filtered Metadata

Jon
Bob

lassen
lassen

Bob lassen

Filter on metadata: 
platform==“lassen" && 

user==“Bob”

Metadata fields useful for understanding 
and manipulating thicket object!
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▪ Compose data from diff. sources and types
— Different scaling (e.g., strong, weak)
— Different application parameters
— Different compilers and optimization levels
— Different hardware types (e.g., CPUs, GPUs)
— Different performance tools

Thicket enables exploratory data analysis of multi-run data
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Documentation: thicket.readthedocs.io

▪ Perform analysis on the thicket of runs
— Manipulate the set of data
— Visualize the dataset
— Perform analysis on the data
— Model data
— Leverage third-party tools in the Python ecosystem

Thicket enables exploratory data analysis of multi-run data

▪ Compose data from diff. sources and types
— Different scaling (e.g., strong, weak)
— Different application parameters
— Different compilers and optimization levels
— Different hardware types (e.g., CPUs, GPUs)
— Different performance tools
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▪ Open-source suite of loop-based kernels commonly found in HPC applications
showcasing performance of different programming models on different hardware

▪ 560 runs/profiles:
— 2 clusters (CPU, CPU+GPU)
— 4 problem sizes
— 3 compilers, 4 optimizations

Case Study 1: RAJA Performance Suite

— 3 programming models (sequential, OpenMP, CUDA)
— 3 performance tools (Caliper, PAPI, Nsight Compute)

[1M, 2M, 4M, 8M]

[1M, 2M, 4M, 8M]

[1M, 2M, 4M, 8M]

[1M, 2M, 4M, 8M]

[1M, 2M, 4M, 8M]
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Use Thicket to compose multi-platform, multi-tool data
Thicket object composed of 2 profiles run on CPU

Thicket object composed of 2 profiles run on GPU

CPU GPU

1M

4M

1M

4M

1M

4M

1M

4M

1M

4M

1M

4M
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Analyze multi-architecture/multi-tool data

▪ Dataset: 4 types of profiles side-by-side to compare CPU to GPU performance
 Basic CPU metrics from Caliper

 Top-down metrics from Caliper/PAPI

 GPU runtime from Caliper

 GPU metrics from Nsight Compute

▪ Examples of analysis:
— Compute CPU/GPU speedup
— Correlate memory and compute usage on the CPU vs. GPU

1 2 3 4

1

2

3

4

8M

8M

CPU CPU top-down GPU GPU Nsight Compute

Node
Problem

size
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Manipulate: Filter using call path query

Filter on call path:
(1) Node named 

“Base_CUDA”

Input call tree Output call tree

I Lumsden et al. “Enabling Call Path Querying in Hatchet to Identify 
Performance Bottlenecks in Scientific Applications”, e-Science 2022
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Documentation: thicket.readthedocs.io

Input call tree Output call tree

Manipulate: Filter using call path query

Filter on call path:
(1) Node named 

“Base_CUDA”
(2) Node with “block_128”  

in name (and any 
nodes in between)

I Lumsden et al. “Enabling Call Path Querying in Hatchet to Identify 
Performance Bottlenecks in Scientific Applications”, e-Science 2022
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Visualize: Intel CPU top-down analysis

▪ Top-down analysis uses HW counters in a 
hierarchy to identify bottlenecks*

▪ Use Caliper’s top-down module to derive 
top-down metrics for call-tree regions

▪ Thicket’s tree+table visualization shows 
top-down metrics as stacked bar charts, 
each bar is a profile

— Apps_VOL3D has the highest retiring rates

— Lcals_HYDRO and Stream_DOT become 
more backend bound as problem size grows

*
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Use third-party Python libraries, e.g., Scikit-learn clustering

1. Select data of interest

— Filter 8M problem size

— Use query language to 
extract all implementations 
of the Stream kernel

2. (optional) Normalize data

3. Apply scikit-learn 
clustering to top-down 
analysis metrics of runs 
with different compiler 
optimization levels

Optimization Level K-Means Clusters

-O0
-O1
-O2
-O3

0
1
2

Stream_ADD
Stream_COPY
Stream_DOT
Stream_MUL
Stream_TRIAD

Kernels
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Documentation: thicket.readthedocs.io

▪ MARBL is a next-generation multi-physics code developed at LLNL

▪ 60 runs/profiles:
— 2 clusters (rztopaz, AWS ParallelCluster)
— 2 MPI libraries (impi, openmpi)
— 6 node/rank counts
— 5 repeat runs per config

Case Study 2: MARBL multi-physics code
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Documentation: thicket.readthedocs.io

1. Use groupby(mpi.world.size) to generate unique subsets of 
data which are repeated runs; compute noise

2. Compose runs on different platforms and at different scales

impi and OpenMPI scale 
well up to 16 nodes

Manipulate: Compute noise and scaling

3. Generate strong scaling plot with matplotlib
— Deviation shown in shaded region, dots are average 

of 5 runs
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Extra-P derives an analytical performance model from an ensemble of profiles covering one 
or more modeling parameters             http://github.com/extra-p/extrap

▪ Select functions of 
interest

▪ Call Extra-P to model 
scaling on different 
hardware types

Model: Use third-party Python library, Extra-P

http://github.com/extra-p/extrap
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Documentation: thicket.readthedocs.io

▪ Thicket’s interactive parallel coordinates plot shows relationships between metadata 
variables, and between metadata and performance data

Visualize metadata with parallel coordinates plot

num elems max
avg time (inc)arch

walltime

num_elems_max

mpi.world.size

mpi.world.size
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Documentation: thicket.readthedocs.io

Determine which parallel algorithm is executing 
from the performance data

Anomaly Removal Techniques for Performance Data:
1 Samples that are statistical outliers based on 

metadata parameter grouping.
2 Sets of samples where the runtime does not scale.

1

2

▪ Why use Thicket to interface with PyTorch 
to provide neural network analysis of 
performance data?
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Documentation: thicket.readthedocs.io

Selecting Subsets of Data in Thicket

▪ Easily select subsets of 
data in thicket 
performance table

▪ K-Fold Cross Validation 
helps prevent overfitting 
on training data

▪ Selecting also useful for 
varying input features to 
training phase
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Documentation: thicket.readthedocs.io

Neural Network Model and Accuracy

▪ Labeled Thicket data is used to train a 
neural network

▪ Unlabeled data passed in for classification
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Can we observe performance fluctuations over time?

main

lulesh.cycle

LagrangeLeapFrog

fine-grained, function-based measurement (e.g., execution time)

coarse-grained, iteration-based measurement (e.g. memory utilization)

lulesh.cycle

LagrangeLeapFrog

time iteration 0 iteration 1

Pattern Constant Phased Dynamic Sporadic

Score 0.0-0.2 0.2-0.4 0.4-0.6 0.6-1.0

Symbol → ⤳ ⇝ ↝

𝑃𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑡 = 1 −
σ𝑡=0
𝑇 𝑀𝑡

σ𝑡=0
𝑇 𝑚𝑎𝑥0<𝑡<𝑇𝑀𝑡

▪ Thicket can then 
categorize      
temporal         
patterns [1]: 

[1] I.B. Peng, I. Karlin, M. B. Gokhale, K. 
Shoga, M. P. LeGendre, and T. Gamblin. A 
holistic view of memory utilization on hpc 
systems: Current and future trends. 
Proceedings of the International 
Symposium on Memory Systems, 2021.

▪ Caliper collects 
metrics at set 
intervals
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Timeseries metrics visualizations
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▪ Display pattern symbol and 
temporal score as part of 
the call tree

▪ Use python plotting 
libraries to create a more 
granular visualization
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Thicket is a toolkit for exploratory data analysis of multi-run data

https://github.com/LLNL/thicket
https://github.com/LLNL/thicket-tutorial
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