
Heterogeneous HPC Performance Analysis
with Trace Compass

Low-overhead Trace Collection on GPU

Sébastien Darche <sebastien.darche at polymtl.ca>

June 19th, 2023

Dorsal - Polytechnique Montréal

1

Current projects at DORSAL lab

• The Distributed Open Reliable Systems Analysis Lab

• Strong focus on trace collection and performance analysis

• LTTng, Trace Compass

2

Tooling for HPC

• Score-P traces support through CTF conversion, ROCm runtime
instrumentation

• Multiple analyses available
• Critical path for linux kernel traces
• Hardware performance counters through Score-P
• Call stack among ranks, statistics
• Flame graph
• Communicators, bandwidth
• Critical path for MPI (ongoing work)
• . . .

• Scalability of Trace Compass through distributed analyses (ongoing
work)

• Current work on kernel instrumentation

3

GPU Tracing with hip-analyzer

• Few tools for tracing on GPUs, and often at the cost of very high
performance impact

• GPU Tracing is unweildy : clumsy memory management, massive
parallelism (concurrency control, high throughput)

• Why not separate buffer allocation and event collection ?

4

Similar work

• CUDAAdvisor1 proposes LLVM-based instrumentation of compute
kernels. PPT-GPU2 is similar, with dynamic instrumentation.

• little consideration for overhead (costly kernel-wide atomic
operations)

• Overhead ranging from ∼ 10 × to 120×

• CUDA Flux3 introduces CFG instrumentation combined with static
analysis

• only one thread is instrumented, does not support divergence
• Overhead ranging from ∼ 1 × to 151× (avg. 13.2×)

1D. Shen, S. L. Song, A. Li, et al., “Cudaadvisor: Llvm-based runtime profiling for modern gpus,” in
Proceedings of the 2018 International Symposium on Code Generation and Optimization, 2018.
2Y. Arafa, A.-H. Badawy, A. ElWazir, et al., “Hybrid, scalable, trace-driven performance modeling of
gpgpus,” in Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, 2021, pp. 1–15.
3L. Braun and H. Fröning, “Cuda flux: A lightweight instruction profiler for cuda applications,” in 2019
IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer
Systems, 2019.

5

Method

• Relies on a set of LLVM passes for the host and device IR

• Multi-stage instrumentation
• CFG Counters to retrieve the control flow of the program
• Event collection for precise analysis
• Optionally, original kernel for timing data

• Knowledge of the control flow allows for pre-allocation of the buffer
(and producer offset!)

• Deterministic execution is ensured by reverting memory

6

Results

• Instrumentation tested against the Rodinia benchmark4

Mean overhead Median overhead
Counters instr. (kernel) 2.3× 1.32×
Tracing instr. (kernel) 3.23× 2.34×
Program execution time 4.19× 1.68×

• Good improvements over state of the art

• Significant outliers (large kernels are challenging!)

4S. Che, M. Boyer, J. Meng, et al., “Rodinia: A benchmark suite for heterogeneous computing,” in
2009 IEEE International Symposium on Workload Characterization (IISWC), 2009, pp. 44–54.

7

Scalar instructions

Figure 1: AMD GCN Compute unit5

• A special set of instructions and registers are shared amongst all
threads in a wavefront (SALU, SGPRs)

• Most tracepoints are at wavefront-scope and thus could benefit from
scalar insts. instead of a vector mask

• Requires handwritten assembly routines, not "LLVM IR friendly"

5Reproduced from AMD GPU Hardware Basics, 2019 Frontier Application Readiness Kick-off Workshop

8

Scalar instructions - LLVM IR

• IR is still thread-centric, vectorization is done in the amdgpu backend

• alloca-ted values (locals) are only stored in VPGRs, SALU asm
crashes the compiler

• Solution : Chain of PHI nodes to pass global wavefront state
throughout the kernel

9

Scalar instructions - LLVM IR

define i32 @func(ptr %0, i32 %1) {
; ...

br label %cond

cond: ; preds = %entry, %body

; ...
br i1 %compare, label %body, label %end

body: ; preds = %cond

; ...
br label %cond

end: ; preds = %cond

; ...
ret %value

}

10

Scalar instructions - LLVM IR

define i32 @func(ptr %0, i32 %1) {
; ...
%ctr_entry = call i32 asm "...", "..."()
br label %cond

cond: ; preds = %entry, %body
%ctr_cond = phi i32 [%ctr_entry, %entry], [%ctr_body_inc, %body]
%ctr_cond_inc = call i32 asm "s_add_u32 $0, $0, 1", "=s,s"(i32 %ctr_cond)
; ...
br i1 %compare, label %body, label %end

body: ; preds = %cond
%ctr_body = phi i32 [%ctr_cond_inc, %cond]
%ctr_body_inc = call i32 asm "s_add_u32 $0, $0, 1", "=s,s"(i32 %ctr_body)
; ...
br label %cond

end: ; preds = %cond
%ctr_end = phi i32 [%ctr_cond_inc, %cond]
; ...
ret %value

}

10

Wavefront status

• What can we gain from instrumenting the wavefronts ?
• Precise timestamps : timing analysis
• Trace active threads (EXEC mask)
• Microarchitecture-specific info (HW_ID register)

• Per-CU performance counters ?

11

Quick example

• CFG counters can generate the total number of FLOPs

• Original run allows us to compute the Arithmetic Intensity
(FLOPs/s)

• A quick roofline plot shows we’re below theoretical maximum
performance

• We decide to collect more data for analysis with the event collection
pass

• Precise thread divergence
• If needed, obtain accessed addresses for locality analysis (cache,

coalescing)

12

State system analysis

Which basic block each wavefront is executing. Kernel performs a lookup
on an open-addressing hashmap.

13

Precise timing information

103 104

BBlock 3 duration (ns)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
De

ns
ity

Geometry
512 threads / block
256 threads / block
128 threads / block
64 threads / block

Identify timing information in a "hotspot" of the code. How long the
lookup takes, as a function of block geometry.

14

Challenges

• IR instrumentation, go deeper ?

• Trace size
• Throughput
• Analysis time

• Scalability with large kernels

15

Conclusion and future work

• Encouraging results and feedback

• Runtime event collector on the GPU is on the way
• would eliminate the need for the first CFG run
• particularily challenging to implement!

• Available freely on Github, feedback and/or use cases are more than
welcome

16

