
Methods to seamlessly
mediate conflicts between

the incongruous software stacks
present on HPC systems

Working Group
Scalable Tools Workshop 2023

Lead: Jonathon Anderson
http://bit.ly/sw-stw23 

http://bit.ly/sw-stw23


Participants

● Jonathon Anderson (Rice)
● Wileam Phan (Rice)
● Dragana Grbic (Rice)
● Sameer Shende (Oregon)
● Jim Kupsch (Wisconsin)
● Josef “Bolo” Burger (Wisconsin)
● Hsuan Heng-Wu (Wisconsin)

2

● Paul Ferrell (LANL)
● Timothy Goetsch (LANL)
● Franklin Keithley (LANL)
● Ben Woodard (Red Hat)
● Matt Legendre (LLNL)
● Nathan Tallent (PNNL)
● Mahesh Rajan (Trenza)



Spack gripes

● Problems finding external packages and compiler
○ System libssl vs Spack-built libssl
○ Doesn’t work with oneAPI components
○ Erroneously detects multiple LLVM packages (llvm, llvm-doe, llvm-amdgpu)

● Automatic Cray modules detection
○ Need to manually enter modules in packages.yaml
○ Resulting compilers.yaml is huge

● Issues with concretizer reuse (v0.20)
○ Doesn’t work when binary cache changes
○ Can pick up packages built with the wrong compiler
○ Any small change will cause a re-hash
○ ABI compatibility checkers (e.g. libabigail) would fix this

● Facility-provided binary cache
○ Users need to follow the exact same prescriptions, otherwise it won’t work

3



Spack resources

● GitHub repo for sharing Spack configs:
https://github.com/spack/spack-configs

● E4S tracks spack.yaml configs for most DOE facilities:
https://dashboard.e4s.io/

● OLCF Spack environments tutorial (outdated):
https://docs.olcf.ornl.gov/software/spack_env/index.html

● NERSC Spack configs GitHub mirror repo:
https://github.com/NERSC/spack-infrastructure

4

https://github.com/spack/spack-configs
https://dashboard.e4s.io/
https://docs.olcf.ornl.gov/software/spack_env/index.html
https://github.com/NERSC/spack-infrastructure


Embracing containers in HPC? Pros

● Used a lot in the cloud environment
● Portable (build once, run everywhere)
● Success stories at E4S

5



Embracing containers in HPC? Cons - 1

● Not enough portability across different HPC systems
● Mismatched glibc/libstdc++ versions

○ e.g. ROCm containers vs system glibc
○ Proposed solution: glibc execution introspection at library load time
○ Work in progress: Fedora Silverblue but for containers (currently in internal CI at Red Hat)

● GPU kernel driver mismatch
○ NVIDIA solved this with OCI hooks and driver compatibility table
○ AMD and Intel need to catch up
○ Also happens with other kernel drivers and support libraries (e.g. sep5 for VTune)
○ Need tools to check kernel driver ABI compatibility with userspace

● Semantic versioning lies
○ Vendors tend to change stuff without telling anyone, esp. at testbeds

6

https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#id3


Embracing containers in HPC? Cons - 2

● Often contains unoptimized builds (e.g. MPI built with no fabrics)
● Matching MPI stacks are non-trivial

○ e.g. ROCm container + Cray MPICH + fabrics
○ MPICH ABI specifications vs OpenMPI implementation
○ See e4s-cl for a possible solution
○ Some progress in MPI specs 4.2, but needs more work
○ Generic/”fat-binary” fabric drivers can be useful
○ Can also use compatiblity layers to the host’s MPI stack, but there are overhead and security 

issues
● Things keep evolving – hard to track all of them
● Need tools for debugging processes inside containers

7

https://github.com/E4S-Project/e4s-cl


Miscellaneous war stories

● Omni machine at Oregon Frank (all 3 GPU vendors in one machine)
○ Problems with Intel/AMD open source vs NVIDIA proprietary OpenCL stacks
○ Resizable BAR (needed for Intel GPUs) unavailable on servers
○ Eventually gave up

8



Action items

● libabigail is almost ready, just needs more beta testers
● Research topic for (masochistic) PhD student:

how to match kernel drivers with userspace
● Push AMD and Intel to provide driver compatibility tables

(hardware support and runtime support)
● Continue efforts in MPI Forum towards a uniform MPI ABI

9


