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Topics not discussed

● Visualization Strategies
● Data Collection
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Programmatic Analysis of Performance Data

Why?

● Automated performance analysis and diagnosis
● Comparative analysis of multiple executions
● Analysis of very large scale executions

● Zooming and scrolling with a GUI isn’t enough
● Automatic feedback and tuning of applications and systems

● E.g. rank reordering, feedback to compiler
● Cheaper than building custom GUIs
● Ad-hoc investigation of unexpected phenomena
● Evaluate conjectures about program performance
● Tool validation
● Provide input to ChatGPT when looking for performance guidance
● Fusion of information sources, e.g. Caliper data, machine organization
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Programmatic Analysis of Performance Data

What?

● Data model for performance data
○ E.g. event model for traces
○ PERIXML: http://cscads.rice.edu/2008-07-snowbird-perixml.pdf

● Data representations for performance data
○ Goal: usable at scale

● Operations on performance data
● Ensemble analysis within an execution (e.g. across ranks, GPUs)
● Ensemble analysis across different executions
● Summarization of traces or sections or subsets (e.g. convert to profiles)
● Binning of prominent performance features

○ E.g. communication with particular characteristics
○ Analysis of time-variant behavior
○ Analysis at multiple levels of abstraction

■ Hourglass model (Tennessee) doi:10.1145/3274770
● Presentation/Visualization
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Programmatic Analysis of Performance Data

How?

● Parsing of profiles
● Parsing of trace data
● Merging profiles from different executions
● Analysis of time-variant behavior

○ Strategies to identify timesteps
■ Application instrumentation
■ Fourier analysis
■ Auto-correlation
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What do we want from traces?

Trace selection

● Subset of traces
● Time window in trace
● Match patterns in trace lines

○ May include performance or semantic attributes of items in the trace
■  e.g. long mallocs

● Sequenced-before, Happens-before and Happens-after
○ Multiple resolutions of analysis

● Query language for traces in Perfetto
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Multiple different query levels

● User-level analysis queries
● Hatchet or Pipit query layer
● Data extraction/access query layer
● ScrubJay

○ Bring in data from multiple sources, scale time
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Hatchet has three levels of query languages

● String-based dialect (easiest to read)
● Object-based dialect
● Base syntax (more specific, low-level)
● I. Lumsden eScience’22: https://www.osti.gov/servlets/purl/1893573
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Issues - 1

● Metadata, metadata, metadata
○ Describe each GPU in the system
○ What nodes am I running on
○ What compiler is used for the code ranges in the application
○ See Adiak (https://github.com/llnl/adiak)

■ Machine name, attributes in environment variables, MPI attributes (size), time of launch, user 
name

○ Perhaps things like system load
○ MachineState (https://github.com/RRZE-HPC/MachineState)

■ Machine names, env variables MPI settings, temperature, system settings, OS settings, 
frequencies, power limits, co-processor infos, system topology, user information, loaded 
modules, linked libs to application, load, IB network, file systems, … 

■ Allows comparison of two machine states / meta data sets
○ Application-level info

■ Static: what physics packages enabled, problem size
■ Performance measure for a run: FOM

○ Dynamic machine information, e.g., changing resources, cache sizes, topology mapping, etc. - 
captured with sys-sage (https://github.com/caps-tum/sys-sage )
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Issues - 2

● Data representation
○ Scalability

■ Sparse
■ Out-of-core data
■ Lazy reading of requested slices on demand

● Filtering in multiple dimensions
○ Selective fetch
○ Filtering of trace data

■ Data server that performs read operations 
● Query language design

○ Commonality among different tools, Pipit, Hatchet, Thicket, lower-level layers
● Memory management for scalability
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Types of tools

● Online
○ Chimbuko - trace collection as needed for coarse-grain epochs
○ Vampir online collection and analysis
○ System tuning

■ Collection of window of metric trace data
● Post-mortem

○ Hatchet
○ Thicket
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Action Items

● How HPCToolkit data source might provide data for Hatchet/Thicket/Pipit
● Perhaps have an aggregate data only mode for hpcprof
● Query language design
● Common data extraction API for different kinds of data

○ Hpctoolkit
○ Trenza survey data
○ Nsight systems
○ Rocprof, omniperf, omnitrace, uProf
○ VTune
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