Programmatic Analysis of Performance Data:
APls, and Uses

Scalable Tools Workshop 2023
Group Lead: John Mellor-Crummey

https://bit.ly/stw-pa

Topics not discussed

e \isualization Strategies
e Data Collection

Participants

John Mellor-Crummey (Rice University)
Marty Itzkowitz (Rice University)
Wileam Phan (Rice University)
Dragana Grbic (Rice University)
Laksono Adhianto (Rice University)
Dave Montoya (Trenza)

Mahesh Rajan (Trenza)

Abhinav Bhatele (University of Maryland)
Matt Legendre (LLNL)

Kathleen Shoga (LLNL)

Stephanie Brink (LLNL)

David Boehme (LLNL)

Kate Isaacs (University of Utah)
Shadmaan Hye (University of Utah)
Rahat Zaman (University of Utah)
Connor Scully-Allison (University of Utah)
Martin Schulz (TU-Munich)

Bert Wesarg (TU-Dresden)

Jesus Labarta (BSC)

Thomas Gruber (NHR@FAU)

Jan Laukemann (NHR@FAU)
Qidong Zhao (NCSU)

Keren Zhou (OpenAl)

Programmatic Analysis of Performance Data

Why?

Automated performance analysis and diagnosis
Comparative analysis of multiple executions
Analysis of very large scale executions
e Zooming and scrolling with a GUI isn’t enough
Automatic feedback and tuning of applications and systems
e E.g. rank reordering, feedback to compiler
Cheaper than building custom GUIs
Ad-hoc investigation of unexpected phenomena
Evaluate conjectures about program performance
Tool validation
Provide input to ChatGPT when looking for performance guidance
Fusion of information sources, e.g. Caliper data, machine organization

Programmatic Analysis of Performance Data

What?

e Data model for performance data
o E.g. event model for traces
o PERIXML: http://cscads.rice.edu/2008-07-snowbird-perixml.pdf

e Data representations for performance data
o Goal: usable at scale

e Operations on performance data
e Ensemble analysis within an execution (e.g. across ranks, GPUs)
e Ensemble analysis across different executions
e Summarization of traces or sections or subsets (e.g. convert to profiles)
e Binning of prominent performance features

o E.g. communication with particular characteristics

Analysis of time-variant behavior

o Analysis at multiple levels of abstraction
m Hourglass model (Tennessee) doi:10.1145/3274770
e Presentation/Visualization

(@)

http://cscads.rice.edu/2008-07-snowbird-perixml.pdf
https://dl.acm.org/doi/10.1145/3274770

Programmatic Analysis of Performance Data

How?

Parsing of profiles
Parsing of trace data
Merging profiles from different executions
Analysis of time-variant behavior
o Strategies to identify timesteps
m Application instrumentation
m Fourier analysis
m Auto-correlation

What do we want from traces?

Trace selection

e Subset of traces
e Time window in trace
e Match patterns in trace lines
o May include performance or semantic attributes of items in the trace
m e.g.long mallocs
e Sequenced-before, Happens-before and Happens-after
o Multiple resolutions of analysis
e Query language for traces in Perfetto

https://perfetto.dev/docs/quickstart/trace-analysis

Multiple different query levels

User-level analysis queries
Hatchet or Pipit query layer

Data extraction/access query layer
ScrubJay

o Bring in data from multiple sources, scale time

Hatchet has three levels of query languages

String-based dialect (easiest to read)

Object-based dialect

Base syntax (more specific, low-level)
|. Lumsden eScience’22: https://www.osti.gov/servlets/purl/1893573

Base Syntax
query = QueryMatcher().match(

L 2
lambda row: re.match(
SHPT_ 0,
row[“name”])
is not None
and row[“PAPI L2 TCM”] > 5
) . r‘el(“*”)

Object-based Dialect
query = [

(((.))) {

“name”: “MPI_.*”,

“PAPI_L2_TCM”: “> 5”

3>

€k

]

String-based Dialect
query = """
MATCH (".", p)->("*")
WHERE p."name" =~ "MPI_.*"
AND p."PAPI_L2_TCM" > 5

+ Support any query
- Require Python libs knowledge
- Work with Python only

+ Use built-in Python objects
- Support limited queries
- Work with Python only

+ Work with any language
- Support limited queries

Issues - 1

Metadata, metadata, metadata

O O O O

Describe each GPU in the system

What nodes am | running on

What compiler is used for the code ranges in the application
See Adiak (https://qithub.com/lInl/adiak)

m Machine name, attributes in environment variables, MPI attributes (size), time of launch, user
name

Perhaps things like system load
MachineState (https://github.com/RRZE-HPC/MachineState)

m Machine names, env variables MPI settings, temperature, system settings, OS settings,
frequencies, power limits, co-processor infos, system topology, user information, loaded
modules, linked libs to application, load, IB network, file systems, ...

m Allows comparison of two machine states / meta data sets

Application-level info
m Static: what physics packages enabled, problem size
m Performance measure for a run: FOM
Dynamic machine information, e.g., changing resources, cache sizes, topology mapping, etc. -

captured with sys-sage (https://github.com/caps-tum/sys-sage)

10

https://github.com/llnl/adiak
https://github.com/RRZE-HPC/MachineState
https://github.com/caps-tum/sys-sage

Issues - 2

e Data representation
o Scalability

m Sparse

m Out-of-core data

m Lazy reading of requested slices on demand

e Filtering in multiple dimensions

o Selective fetch
o Filtering of trace data

m Data server that performs read operations

e Query language design
o Commonality among different tools, Pipit, Hatchet, Thicket, lower-level layers
e Memory management for scalability

1

Types of tools

e Online
o Chimbuko - trace collection as needed for coarse-grain epochs
o Vampir online collection and analysis
o System tuning
m Collection of window of metric trace data

e Post-mortem

o Hatchet
o Thicket

12

https://dl.acm.org/doi/10.1145/3426462.3426465
https://www.springerprofessional.de/online-performance-analysis-with-the-vampir-tool-set/16481892

Action ltems

How HPCToolkit data source might provide data for Hatchet/Thicket/Pipit
Perhaps have an aggregate data only mode for hpcprof
Query language design

Common data extraction API for different kinds of data
Hpctoolkit

Trenza survey data

Nsight systems

Rocprof, omniperf, omnitrace, uProf

VTune

o O O O O

13

