
Programmatic Analysis of Performance Data:
APIs, and Uses

Scalable Tools Workshop 2023
Group Lead: John Mellor-Crummey

https://bit.ly/stw-pa

Topics not discussed

● Visualization Strategies
● Data Collection

2

● John Mellor-Crummey (Rice University)
● Marty Itzkowitz (Rice University)
● Wileam Phan (Rice University)
● Dragana Grbic (Rice University)
● Laksono Adhianto (Rice University)
● Dave Montoya (Trenza)
● Mahesh Rajan (Trenza)
● Abhinav Bhatele (University of Maryland)
● Matt Legendre (LLNL)
● Kathleen Shoga (LLNL)
● Stephanie Brink (LLNL)
● David Boehme (LLNL)

Participants

● Kate Isaacs (University of Utah)
● Shadmaan Hye (University of Utah)
● Rahat Zaman (University of Utah)
● Connor Scully-Allison (University of Utah)
● Martin Schulz (TU-Munich)
● Bert Wesarg (TU-Dresden)
● Jesus Labarta (BSC)
● Thomas Gruber (NHR@FAU)
● Jan Laukemann (NHR@FAU)
● Qidong Zhao (NCSU)
● Keren Zhou (OpenAI)

3

Programmatic Analysis of Performance Data

Why?

● Automated performance analysis and diagnosis
● Comparative analysis of multiple executions
● Analysis of very large scale executions

● Zooming and scrolling with a GUI isn’t enough
● Automatic feedback and tuning of applications and systems

● E.g. rank reordering, feedback to compiler
● Cheaper than building custom GUIs
● Ad-hoc investigation of unexpected phenomena
● Evaluate conjectures about program performance
● Tool validation
● Provide input to ChatGPT when looking for performance guidance
● Fusion of information sources, e.g. Caliper data, machine organization

4

Programmatic Analysis of Performance Data

What?

● Data model for performance data
○ E.g. event model for traces
○ PERIXML: http://cscads.rice.edu/2008-07-snowbird-perixml.pdf

● Data representations for performance data
○ Goal: usable at scale

● Operations on performance data
● Ensemble analysis within an execution (e.g. across ranks, GPUs)
● Ensemble analysis across different executions
● Summarization of traces or sections or subsets (e.g. convert to profiles)
● Binning of prominent performance features

○ E.g. communication with particular characteristics
○ Analysis of time-variant behavior
○ Analysis at multiple levels of abstraction

■ Hourglass model (Tennessee) doi:10.1145/3274770
● Presentation/Visualization

5

http://cscads.rice.edu/2008-07-snowbird-perixml.pdf
https://dl.acm.org/doi/10.1145/3274770

Programmatic Analysis of Performance Data

How?

● Parsing of profiles
● Parsing of trace data
● Merging profiles from different executions
● Analysis of time-variant behavior

○ Strategies to identify timesteps
■ Application instrumentation
■ Fourier analysis
■ Auto-correlation

6

What do we want from traces?

Trace selection

● Subset of traces
● Time window in trace
● Match patterns in trace lines

○ May include performance or semantic attributes of items in the trace
■ e.g. long mallocs

● Sequenced-before, Happens-before and Happens-after
○ Multiple resolutions of analysis

● Query language for traces in Perfetto

7

https://perfetto.dev/docs/quickstart/trace-analysis

Multiple different query levels

● User-level analysis queries
● Hatchet or Pipit query layer
● Data extraction/access query layer
● ScrubJay

○ Bring in data from multiple sources, scale time

8

Hatchet has three levels of query languages

● String-based dialect (easiest to read)
● Object-based dialect
● Base syntax (more specific, low-level)
● I. Lumsden eScience’22: https://www.osti.gov/servlets/purl/1893573

9

Issues - 1

● Metadata, metadata, metadata
○ Describe each GPU in the system
○ What nodes am I running on
○ What compiler is used for the code ranges in the application
○ See Adiak (https://github.com/llnl/adiak)

■ Machine name, attributes in environment variables, MPI attributes (size), time of launch, user
name

○ Perhaps things like system load
○ MachineState (https://github.com/RRZE-HPC/MachineState)

■ Machine names, env variables MPI settings, temperature, system settings, OS settings,
frequencies, power limits, co-processor infos, system topology, user information, loaded
modules, linked libs to application, load, IB network, file systems, …

■ Allows comparison of two machine states / meta data sets
○ Application-level info

■ Static: what physics packages enabled, problem size
■ Performance measure for a run: FOM

○ Dynamic machine information, e.g., changing resources, cache sizes, topology mapping, etc. -
captured with sys-sage (https://github.com/caps-tum/sys-sage)

10

https://github.com/llnl/adiak
https://github.com/RRZE-HPC/MachineState
https://github.com/caps-tum/sys-sage

Issues - 2

● Data representation
○ Scalability

■ Sparse
■ Out-of-core data
■ Lazy reading of requested slices on demand

● Filtering in multiple dimensions
○ Selective fetch
○ Filtering of trace data

■ Data server that performs read operations
● Query language design

○ Commonality among different tools, Pipit, Hatchet, Thicket, lower-level layers
● Memory management for scalability

11

Types of tools

● Online
○ Chimbuko - trace collection as needed for coarse-grain epochs
○ Vampir online collection and analysis
○ System tuning

■ Collection of window of metric trace data
● Post-mortem

○ Hatchet
○ Thicket

12

https://dl.acm.org/doi/10.1145/3426462.3426465
https://www.springerprofessional.de/online-performance-analysis-with-the-vampir-tool-set/16481892

Action Items

● How HPCToolkit data source might provide data for Hatchet/Thicket/Pipit
● Perhaps have an aggregate data only mode for hpcprof
● Query language design
● Common data extraction API for different kinds of data

○ Hpctoolkit
○ Trenza survey data
○ Nsight systems
○ Rocprof, omniperf, omnitrace, uProf
○ VTune

13

