
http://bit.ly/BinaryVis

Binary Visualization: 
Needs and Directions

Matt Legendre and Shadmaan Hye

Scalable Tools Workshop 2023



http://bit.ly/BinaryVis

● Shadmaan Hye (The University of Utah)
● Matt Legendre (LLNL)
● Connor Scully-Allison (The University of Utah)
● Kate Isaacs (The University of Utah)
● Kathleen Shoga (LLNL)
● Wileam Phan (Rice)
● Jim Kupsch (Wisconsin)
● Tim Haines (Wisconsin)
● William Jalby (University of Versailles Paris Saclay)
● Cédric Valensi (University of Versailles Paris Saclay)
● Rahat Zaman (University of Utah)

Participants

2



http://bit.ly/BinaryVis

Feature Possibilities & Requests
What are people trying to analyze in the binary file (so we can figure out what features to add)?

● [Upcoming Dyninst Feature!] Data flow analysis by propagating registers (we 
can associate with variables and/or know type, know which registers are 
live/dead) ← Associate this info with instruction/operand. Users who wrote the 
code can help understand what’s going on.
○ In the added image, there would be more info in the blue boxes
○ Useful to annotate NOT replace
○ Timeline? - Next few weeks

3

○ API: Data flow object
○ Processing Cost: Fine as long as 

functions not 100s of MBs :) 



http://bit.ly/BinaryVis

● Dyninst pretty-printers are designed for the terminal. How can we get better 
strings?
○ [Converged idea] Would be good if we could access piecemeal an 

instruction knowing *what* each piece is
■ Possibly vector of structs that says what is an operand or opcode, 

which operand is it, which opcode is it, etc.
■ This gives us the ability on the front-end to provide multiple style 

options to users
○ Other ideas

■ Dyninst could add them to translate operands
■ Should we the consumer give the operand annotations so we can get them back?
■ Maybe ask Dyninst for the opcode of operand 1, but they might be in different orders 

depending on architecture
● Is Operand 1 the leftmost or rightmost operand? Depends on architecture.

4

Displaying an instruction



http://bit.ly/BinaryVis

● We want some way to make it more visually salient, concerns with if different 
instructions interleaved talk about different variables.

● We want to highlight things like hoisting. It would be good to have first class 
saliency in marking whether things get hoisted. 
○ Want to be able to mark hoisting and unrolling, needs to be written on top 

of Dyninst to do it. Is this possible?
■ Code duplication could be quick if two blocks far away point to the 

same code
● Or is it rough because DWARF doesn’t break them up?

■ Loop unrolling similar? (See next slide) 

5

Instruction Re-ordering/Interleaving & Detecting Optimizations



http://bit.ly/BinaryVis

● Loop unrolling similar to code duplication? But what if vectorization?
○ HPCStruct does this with heuristics
○ Look for same source line + repeated operations (instruction mix)
○ Does detecting loop increments (induction variable) help? Can we do this 

in the binary?
■ Look for the conditional branch near the back edge?

● Stencils will have common patterns
■ MAQAO does this, check out how they do it (example: 

https://tinyurl.com/yt9pjwpz), will send source file link
● 90-95% success depending on degree of optimization and 

compiler tricks
○ Would “loop widths” (increments) be enough to understand that unrolling 

occur?
6

Detecting Loop Unrolling

https://tinyurl.com/yt9pjwpz


http://bit.ly/BinaryVis 7

MAQAO Example

Colors show grouping of memory addresses (often a given array) like variable 
renaming. The vectorization (loop width) is shown on the right panel.



http://bit.ly/BinaryVis

● What other optimizations should we try to flag for our scientific users?
○ Loop Un-Switching (For-If becomes If-For/Else-For) as named in GCC 

aka “If-hoisting” as a way to think of it
■ Even more generically, other variants?

● Can we make conditionals more obvious some way visually? Would that 
make it easier to see the variants? Would users understand that?
○ Note if-statements don’t necessarily come back together.
○ What if there’s a no-return call in the middle? 

● Aligned memory accesses – which instructions are aligned

8

Other optimizations we want to make salient?



http://bit.ly/BinaryVis

● On-demand piecemeal binary analysis and vis
○ Big binaries may take a while
○ We already have client-server so not all data is on the client

● Not yet packaged - coming soon!

9

Biggest Limitations



http://bit.ly/BinaryVis

● Symtab API has it available but not available easily. HPCStruct using it.

● Right now can map something back to where it derived from, but a nicer 
interface to retrieve that.

● This is hairy enough we decide not to challenge it from the vis side now

10

Can we obtain more on line mappings with instrumented 
rewritten binaries? 



http://bit.ly/BinaryVis 11

We assume the user is fairly advanced.



http://bit.ly/BinaryVis

CcNav is for compiler optimizations, not testing on user 
codes that aren’t as optimized.

● Artifact of RAJAPerf

12


