Scalable Tools Workshop 2023

Binary Visualization:

Needs and Directions
Matt Legendre and Shadmaan Hye

http://bit.ly/BinaryVis

Participants

Shadmaan Hye (The University of Utah)

Matt Legendre (LLNL)

Connor Scully-Allison (The University of Utah)
Kate Isaacs (The University of Utah)

Kathleen Shoga (LLNL)

Wileam Phan (Rice)

Jim Kupsch (Wisconsin)

Tim Haines (Wisconsin)

William Jalby (University of Versailles Paris Saclay)
Cédric Valensi (University of Versailles Paris Saclay)
Rahat Zaman (University of Utah)

http://bit.ly/BinaryVis

Feature Possibilities & Requests

What are people trying to analyze in the binary file (so we can figure out what features to add)?

e [Upcoming Dyninst Feature!] Data flow analysis by propagating registers (we
can associate with variables and/or know type, know which registers are
live/dead) <« Associate this info with instruction/operand. Users who wrote the

code can help understand what’s going on.

©)

© O O O

In the added image, there would be more info in the

Useful to annotate NOT replace
Timeline? - Next few weeks

API: Data flow object

Processing Cost: Fine as long as
functions not 100s of MBs :)

http://bit.ly/BinaryVis

loop_1.7:1/3

Ox92A00: mov Oxffffffa0(%rbp) g , %rax

Ox92A04: cmp Oxffffffco(%rbp) num_g , %rax

Ox92A08: jl

loop_1.1:2/3
Ox92A1A: mov $0x0, Oxffffffas8(%rbp) m
Ox92A22: nop

Displaying an instruction

e Dyninst pretty-printers are designed for the terminal. How can we get better

strings?
o [Converged idea] Would be good if we could access piecemeal an
instruction knowing *what* each piece is
m Possibly vector of structs that says what is an operand or opcode,
which operand is it, which opcode is it, etc.
m This gives us the ability on the front-end to provide multiple style

options to users
o Otherideas
m Dyninst could add them to translate operands
m Should we the consumer give the operand annotations so we can get them back?
m Maybe ask Dyninst for the opcode of operand 1, but they might be in different orders

depending on architecture
e s Operand 1 the leftmost or rightmost operand? Depends on architecture.

http://bit.ly/BinaryVis

Instruction Re-ordering/Interleaving & Detecting Optimizations

e \We want some way to make it more visually salient, concerns with if different
instructions interleaved talk about different variables.
e \We want to highlight things like hoisting. It would be good to have first class
saliency in marking whether things get hoisted.
o Want to be able to mark hoisting and unrolling, needs to be written on top
of Dyninst to do it. Is this possible?
m Code duplication could be quick if two blocks far away point to the
same code
e Oris it rough because DWARF doesn'’t break them up?
m Loop unrolling similar? (See next slide)

http://bit.ly/BinaryVis °

Detecting Loop Unrolling

e Loop unrolling similar to code duplication? But what if vectorization?
o HPCStruct does this with heuristics
o Look for same source line + repeated operations (instruction mix)
o Does detecting loop increments (induction variable) help? Can we do this
in the binary?
m Look for the conditional branch near the back edge?
e Stencils will have common patterns
m MAQAO does this, check out how they do it (example:
https://tinyurl.com/yt9pjwpz), will send source file link
e 90-95% success depending on degree of optimization and
compiler tricks
o Would “loop widths” (increments) be enough to understand that unrolling

occur?
http://bit.ly/BinaryVis

https://tinyurl.com/yt9pjwpz

MAQAO Example

Loop Id: 401 Module: libgmckl.s0.0 Source: gmckl_mo.c:1158-1163 Coverage: 68.28%

Assembly Code v

A

= Path[o 2|/ 1 [oK]

Average path: Display a virtual path defined by average values of all real paths

Hide groups
analysis

@x39ch9 VMULPD (¥%R8,%RDX,8),%YMM12,%YMM15 [2]

: 14 Function gmckl_compute_mo_basis_mo_vgl_hpc
@x39cc5 VMOVUPD -@x17@(¥RBP),%YMMIS [9] Source file and lines gmckl_mo.c:1158-1163
@x39ccd VMULPD (%RDI,%RDX,8),%YMM15,%YMMLS [31 Module libgmckl.so.0

@x39cd2 VADDPD %YMM1S,%YMM14,%VMM14
@x39cd7 VMULPD (¥RSI,¥RDX,8),%YMM10,%YM15 [8]
@x39cdc VADDPD XYMMS,%YMM14,%YMM14

@x39ce7 VADDPD XYMM1S,%YMM14,%YMM14

The loop is defined in /ccc/work/cont001/ocre/oserete/TREX/gmckl/src/gmckl_mo.c:1158-1163.

It is main loop of related source loop which is unrolled by 4 (including vectorization).

gain [potentiat [vint | excer [

Vectorization

0 X, 0, L
@x39cf2 VMULPD (%R8,%RDX,8),%YMM8,%YMM14 [2]
@x39cf8 VADDPD (%R13,%RDX,8),%YMM14,¥YMM1S [4]
@x39cff VMULPD (%RDI,¥RDX,8),%YMM7,%YMM14 [31
©8x39de4 VADDPD XYMM14,%YMM15,%YMM1S

|€x39d09 VMULPD (¥RSI,¥RDX,8),%YMI6,%YMi14 [8]
©@x39dee VADDPD XYMM14,%YMM1S,%YMM1S

Your loop is fully vectorized, using full register length. By fully vectorizing your loop, you can lower the cost of
an iteration from 15.50 to 12.00 cycles (1.29x speedup).

All SSE/AVX instructions are used in vector version (process two or more data elements in vector registers).
Since your execution units are vector units, only a fully vectorized loop can use their full power.

©x39d19 VADDPD ¥YMM14,%YMM1S,%YMMLS
0x39dle VMULPD (%R8,%RDX,8),%YMM4,%YMM14 [2]
8x39d24 VMOVUPD %YMM15, (¥R13,%RDX,8) [4]

Colors show grouping of memory addresses (often a given array) like variable
renaming. The vectorization (loop width) is shown on the right panel.

http://bit.ly/BinaryVis !

Other optimizations we want to make salient?

e \What other optimizations should we try to flag for our scientific users?

o Loop Un-Switching (For-If becomes If-For/Else-For) as named in GCC

aka “If-hoisting” as a way to think of it
m Even more generically, other variants?
e Can we make conditionals more obvious some way visually? Would that
make it easier to see the variants? Would users understand that?

o Note if-statements don’t necessarily come back together.

o What if there’s a no-return call in the middle?
e Aligned memory accesses — which instructions are aligned

http://bit.ly/BinaryVis

Biggest Limitations

e On-demand piecemeal binary analysis and vis

o Big binaries may take a while

o We already have client-server so not all data is on the client
e Not yet packaged - coming soon!

http://bit.ly/BinaryVis

Can we obtain more on line mappings with instrumented
rewritten binaries?

® Symtab API has it available but not available easily. HPCStruct using it.

® Right now can map something back to where it derived from, but a nicer
interface to retrieve that.
e This is hairy enough we decide not to challenge it from the vis side now

http://bit.ly/BinaryVis 10

’ ~ o. ~ ~ o -~ ~ ~ ~ -~ ~ ~ o~ ~
p— ~) S p— p—) p—) ~ ~ ~ —
— ® S N N e S § N -5 5 N i N S S S N F S s — —t N\ — Nt = W N N Nl -

http://bit.ly/BinaryVis

CcNav is for compiler optimizations, not testing on user
codes that aren’t as optimized.

e Artifact of RAJAPerf

http://bit.ly/BinaryVis

12

