minitest: Framework for Testing A GPU Performance Tool

Marty Itzkowitz, Software Consultant
itzkowitzmartyl@gmail.com

HPCToolkit Group, Rice University

Scalable Tools Workshop
Granlibakken, Lake Tahoe, California
June 19, 2023

Program Agenda

Introduction

RunLists and theminitest TargetApp’s
TestLists and The DataDescriptor

How it Works

Conclusion

Introduction, |

e Design goal: build a framework for testing HPCToolkit CPU and GPU profiling

* Needed to cope with rapidly evolving Vendor GPU SW stacks and APIs
* Needed to cope with each site’s OS peculiarities

* Needed to cope with multiple compilers and their quirks

* |nvoked by “minitest -r <RunList> <TestList>"

 <RunlList>is a list of directories, each of which builds a TargetApp
e <TestList> is a list of tests to be run in each directory against that TargetApp
 Runs a double loop:

— cd to each directory in the <RunList>; run each test in the <TestList>

— Each test writes TESTPASS or TESTFAIL to the log
— Reports “SUCCESS” (if O TESTFAIL's in log) or “FAILED” (if >0 TESTFAIL’s in log)

Introduction, Il

e Alas, the compiler modules necessary for different GPUs are incompatible

e We can’t do a single run for all predefined RunLists

* The QA.minitest script does multiple minitest runs

* It always runs the CPU tests
e |trunsthe GPU tests for each GPU flavor found on the system

- Loading and unloading the compiler modules
e It will typically need tweaking for each machine’s module structure

* The sum.minitest script summarizes the run(s)

e Can summarize completed run or run in progress

Introduction, Il
Summary of a QA.minitest run, which took about 15 minutes

Summary of minitest -r cpu full run: (this run) tests passed: 114; tests failed: 0; tests skipped: 30
Summary of minitest -r cuda full run: (cum.ulative) tests passed: 291; tests failed: 0; tests skipped: 45
Summary of minitest -r rocm full run: (cum.ulative) tests passed: 425; tests failed: 4; tests skipped: 60

Summary of minitest run as of Fri May 5 20:11:26 CDT 2023
Total tests: 489; passing tests = 425; failing tests = 4 ; skipped tests = €0

Summary of data collection options; tests with multiple options are counted for each option
run-only tests: 42; passing tests = 40; failing tests = 2
CPUTIME tests: 207; passing tests 193; failing tests = 2; skipped tests = 12
REALTIME tests: 81; passing tests 8l1; failing tests = 0; skipped tests = 0
cycles tests: 225; passing tests 165; failing tests = 0; skipped tests = 60
insts tests: 60; passing tests €0; failing tests = 0; skipped tests = 0
PAPI tests: 60; passing tests 0; failing tests = 0; skipped tests = 60

nvgpu tests: 72; passing tests 72; failing tests = 0; skipped tests = 0
nvgpupc tests: 48; passing tests 48; failing tests = (0 skipped tests = 0
u tests: 63; passing tests 6l; failing tests = 2; skipped tests = 0

Summary of failure modes
HSA STATUS ERROR OUT OF RESOURCES failures: 2 of 4 total failures
timeout triggered failures: 2 of 4 total failures

Program Agenda

Introduction

RunLists and theminitest TargetApp’s
Testlists and the DataDescriptor

How it Works

Conclusion

RunLists and theminitest TargetApp’s, |

* A <RunlList>is a file with a list of target directories

* Predefined <RunlList>’s: cpu, cuda, levelO, rocm
 Any other name is assumed to be a file with the user’s custom RunList

* All target directories are inside directory . . . /minitest/<subdir>/
* <subdir>/is one of cpu/, amdgpu/, intelgpu/, or nvidiagpu/
e TargetApps combine <front-end> + <back-end>, built by a <compiler>

* Target directories are named <front-end>.<back-end>.<compiler>

* Target directory contains only a Makefile to build the TargetApp
e TargetApp is named <front-end>.<back-end>.<compiler>.<gputype>

6/1/23 Copyright © 2023, Marty ltzkowitz. All rights reserved. 7

RunLists and theminitest TargetApp’s, Il

* Front-ends are:

* ompthreads.cc, posixthreads.cc, single.cc

e Back-ends are:

nooffload. cc, ompgpu. cc (OpenMP offload)
Vendor-specific offloading:

— cudagpu.cuy, hipgpu.hip.cpp, and syclgpu.cc
All #include a common compute.h
Defines the actual computation

— Ensures identical computation in all Target Apps

RunLists and theminitest TargetApp’s, Il

e All the TargetApp’s behave the same way:

e The Front-end:
— Allocate and initialize 3 arrays of size N (default 40000000) of doubles for each thread
— Spawn the worker threads (or become a worker thread)
— Reap the worker threads when they are done
— Validate the results
e Each worker thread:
— lterate Ntimes (default 3), calling twork () and then spacer ()
* The Back-end implements twork () to offload the computation (or not)
— Copy the 3 arrays to GPU, spawn the Kernel, copy third array back

 Behavior makes the trace easy to understand

RunLists and theminitest TargetApp’s, IV

Screen shot of single-threaded run, Nvidia GPU, cuda-offload, 10 iterations
Zoom in on first iteration: three copy-in’s, then the kernel launch, then the copy-out

20

[rd Profile: single.cudaoffload.gcc.nvgpu @& Trace: single.cudaoffload.gcc.nvgpu D P i+ e = -

Main view
Time Range: [0s, 5.28s] Cross Hair: (2.13s, GPUCONTEXT 1)

I Sz

) 1 1 1 1 I 1 1 1 1 | 1 1 | 1 I 1 1 1 1 1 1 1 1 1
s 0.2s 0.4s 0.6s 0.8s 1s TS A4S TSRS 2s 2.2s 4s 2.6s 2.8 3s N2 S i SO S D S TS ds 4.2s 4.4s 4.6s 4.8s 5s 5.2s

[rd Profile: single.cudaoffload.gcc.nvgpu | Tracg# single.cudaoffload.gcc.nvgpu

Main view
Time Range: [2,846ms, 2,990ms] Crge€ Hair: (2,861ms, GPUCONTEXT 1)

6/1/23

2,850ms 2,860ms 2,870ms 2,880ms 2,890ms 2,900ms 2,910ms 2,920ms 2,930ms 2,946ms 2,950ms 2,960ms 2,970ms 2,980ms 2,990

Copyright © 2023, Marty Itzkowitz. All rights reserved. 10

RunLists and theminitest TargetApp’s, V

Screen shot of four-threaded run, AMD GPU, hip-offload
Zoom in on an interesting region

g Profile: ompthread hipoffload. amdclang rocmgpu.-5.4.3 B Trace: ompthread. hipofflioad. amdclang. rocmgpu.-5.4.3 fat e it+ &= D> 4r

Main view
Time Range: [Os, 98] Cross Hair: (0.65s, THREAD a)

bs O.4s 0.8s 1.2s 1.6s 24s 28s 3 2s B Bs 525 65 165hs 6.8 bEs 8 Bs
l I

Time Range: [5.716 — ross Hair: (5,962ms, THREAD 1)

5720ms 5760ms 5790ms 5820ms 5850ms 5880ms 5910ms 5940ms 5970ms 6000ms 6,030ms 6060ms 6090ms 6,120ms 6,150ms 6,180ms

5/8/23 Copyright © 2023, Marty itzkowitz. All rights reserved. 11

Program Agenda

Introduction

RunLists and theminitest TargetApp’s
TestLists and the DataDescriptor

How it Works

Conclusion

TestLists and the DataDescriptor, |

e <TestList> is a file containing a list of tests
e Each test is defined by a DataDescriptor

* DataDescriptor is of the form expt. * or run. * (the * is explained below)

 Predefined <TestList>’s are: smoke and full

 They each have variants for each predefined <RunlList>. i.e., each GPU type
* smoke runs a few tests in each directory
e full runs many tests in each directory

- A third predefined TestList is stress, not recommended for user use
— stress runs many tests with very high frequency profiling in each directory

* Any other <TestList> argument is a user file with a custom set of tests

TestLists and the DataDescriptor, |l
 The DataDescriptor is either
¢ expt.dtl.dt2.dt3....dtN

— To run the TargetApp under hpcrun and process the data; or

°* run.dtl.dt2.dt3....dtN
— To run the TargetApp without any data collection

* The various .dti. elements are referred to as “data tags”

* Some correspond to data collection arguments:
- .cputime., .realtime, .cycles., .insts., .papicycles., .insts., . t.
— .nvgpu., .nvgpupc., .amdgpu., .levelOgpu.

* Others correspond to run-time options to the TargetApp:

— .NN., .tracker., .MI, .MN.

* Those last two are specific options to minitest TargetApps for iteration count and array size.
- .-<user-label>is an arbitrary user-specified string (must be last data tag)

TestLists and the DataDescriptor, Il

Some Sample DataDescriptors and their Meaning

expt.2.cputime.cycles.insts.t
Run 2 worker threads, collect profile data for CPU Time, cycles, and instructions, with trace data
run.l1.MI,10.tracker

Run 1 worker thread for ten iterations, collect no data, and simulate behavior of LLNL's tracker
(The latter is a barn-door lock implemented when the real tracker broke HPCToolkit)

expt.l.realtime.nvgpu.t

Run 1 worker thread, collect profile data for Real Time and Nvidia GPU data, with trace data
expt.4.cputime.amdgpu.t

Run 4 worker threads, collect profile data for CPU Time and AMD GPU data, with trace data

TestLists and the DataDescriptor, IV

 The DataDescriptor string is appended to all directory and file names

* The measurement directory: meas .DataDescriptor
The database directory: dbase.DataDescriptor

A logfile of the experiment or run: 1log.DataDescriptor
— Makes it easy to identify files corresponding to an experiment or run

Allows many experiments with different DataDescriptors in a directory
Allows repeated experiments in a directory, varying the . -<user-label>

Program Agenda

Introduction

RunLists and theminitest TargetApp’s
TestLists and the DataDescriptor

How it Works

Conclusion

How it Works, |

e A tangled web we weave, ...

e Reflects the incremental accretion of functionality; but

If it ain’t broke, don’t fix it (at least not now)

* Theminitest scriptis invoked with a <RunList> and a <TestList>:

* Keepsalog.minitest file for all operations
* Loops over the directories in the <RunList>

— Runs “make <TestList>" in each directory
— That invokes one of the runsuite. * scripts

* Choice of which such script depends on the Makefile in the directory
e Choice also depends on the <gputype> in the TargetApp

How it Works, Il

* The runsuite. * scripts:

* Write a LOG.suite. * file for all operations
e Read the <TestList> file
 Loop over the tests in the file:

— Invoke dohpct on the TargetApp and args, passing in the DataDescriptor for the test

* runsuite.cuda and runsuite.rocm also support multiple vendor versions:

* Input a list of cuda and rocm versions, respectively; loop over the versions in the list
— Unload current module, load the module for that version
— Run the <TestList> suite, appending the cuda/rocm version string to all names

How it Works, Il

* The dohpct command:

* |nvoked with two arguments: “TargetApp args” and the DataDescriptor
e Parses the DataDescriptor

— Maintaining list of prepend commands

— Maintaining list of arguments for hpcrun

— Maintaining list of arguments to hpestruct, as implied by hpcrun argument
* Formats a shell command

— Starts with the prepend commands

— |If Data Descriptor starts with run., adds a runrun command and args

— If Data Descriptor starts with expt., adds a runhpct command and args

* Invokes system(command), thus executing either runrun or runhpct

How it Works, 1V

* The runrun script:

Is invoked with two arguments: “TargetApp args”, DataDescriptor

Formats a shell command to run the TargetApp with its arguments

Launches the shell command, under timeout and /bin/time

Examines the exit code, output files, etc., to look for possible failure modes
Finishes by writing a TESTPASS or TESTFAIL line to the master 1log.minitest file

— The name of the individual log.DataDescriptor file is always inserted

 Makes it easy to cut-and-paste to see the details of the run, successful or not
e |f TESTFAIL, the failure mode is also inserted into that line

How it Works, V
* The runhpct script:

Is invoked with four arguments: “TargetApp args”, hpcrun args, DataDescriptor, hpecstruct args
Formats a shell command to run hpcrun with the hpcrun args on the TargetApp and its arguments

Launches the shell command, prefaced by timeout and /bin/time

— Examines the exit code, output files, etc., to look for possible failure modes in data collection
If no failures are noted, invokes hpestruct with its args on the measurements directory

— Examines the exit code, output files, etc., to look for possible failure modes in hpestruct
If no failures are noted, invokes hpcprof to create the database directory

— Examines the exit code, output files, etc., to look for possible failure modes in that step
Finally, writes TESTPASS or TESTFAIL to the master log.minitest file

— Contains the path to 1log.DataDescriptor file

* Makes it easy to copy-and-paste to see details of the run
— |f TESTFAIL, the failure mode is also inserted into that line

How it Works, VI

e Future Plans

Add Fortran versions of the Test Directories and TargetApp’s
Add MPI versions of the Test Directories
Develop simple configuration management scheme

— To determine compilers, GPU SW versions, module paths, etc.
Implement scheme to validate recorded data

— Ensure that the data base reflects the real program behavior
Untangle the architectural web (perhaps)

Program Agenda

Introduction

RunLists and theminitest TargetApp’s
Testlists and the Data Descriptor

How it Works

Conclusion

Conclusion

* minitest has met its design goals

* |t has tested HPCToolkit on many sites and compilers

— Different OS versions, different OpenMP implementations, different vendor stacks
e With multiple CUDA and ROCM versions installed
* |t has uncovered bugs in:

— HPCToolkit; GPU SW; compilers; 1ibmonitor

e Some are fixed, some not; some are not yet understood
 HPCToolkit wrapping of vendor OpenMP GPU SW caused failure
* libmonitor failed to initialize before GPU Vendor runtime

e HPCToolkit failures do handle unannounced Vendor ABI changes

* |t has revealed idiosyncrasies in various sites’ environments

— An glibc library version that did not return from fork ()
— A Vendor GPU driver that crashed node when running minitest

— LLNLs tracker, an application from an execute-only file

For More Information, Download the Repository

* minitest isa SMALL GitLab repository
https://gitlab.com/hpctoolkit/minitest.git

* Sources: .../minitest/src/*.{c,.cc, .cpp, .h,.cu}
— 12 files, totalling ~2500 lines

* Scripts: .../minitest/bin/{*run*,*minitest}
— 10 files, totalling ~ 2500 lines

e Runlists, TestLists, Makefiles, etc. are all quite small

* minitest is specific to HPCToolkit

* However, it would be relatively easy to port to another performance tookit:

— runhpct script needs to change for the other toolkit’s workflow, commands, and error output

— The DataDescriptor needs to change for new/different options to the other toolkit’s commands

— dohpct. c needs to change to parse the new DataDescriptor

6/1/23 Copyright © 2023, Marty Itzkowitz. All rights reserved.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

