
Conquering Noise with
Hardware Counters on
HPC Systems
Marcus Ritter1, Ahmad Tarraf1, Alexander Geiß1, Nour Daoud2, Bernd Mohr2, Felix Wolf1

1Technical University of Darmstadt
2Forschungszentrum Jülich GmbH

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 1

Performance and complexity of HPC
systems are constantly increasing

à Important to examine the scaling
behavior of an application and identify
performance bottlenecks early

àUse empirical performance
modeling (e.g., Extra-P)

Problem:
In noisy environments à difficult to
create accurate performance models

§ Strong run-to-run variations of the
underlying measurements

§ Irreproducible and misleading

§ Deviation from intrinsic application
behavior

Motivation

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 2

Empirical performance modeling

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 3

Performance measurements
with different execution
parameters x1,...,xn

t1 t2
t3

tn-2 tn-1
tn

…
.

Machine learning 𝑡 = 𝑓(𝑥!, … , 𝑥")

Alternative metrics:
Hard- and software counters

Problem (cont.):
§ Application runtime affected by noise

§ Most common performance metric

Solution:
Use hardware counters

§ Noise has little impact on some
hardware counters

§ E.g., floating-point operations

§ Selecting the right counters requires a
thorough analysis

§ Once found, the counters can be used
for performance modeling

Motivation

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 4

A detailed noise analysis on various hardware counters on different systems:

à Total of 26950 experiments (PAPI preset events only):

Categorized the counters across the different systems according to their noise resilience
and provided a user guide

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 5

Contributions

Five systems

Four hardware architectures

Three applications

With and without injected noise

Multiple resource configurations
(number of nodes)

Five repetitions per setup

Find noise-resilient hardware counters:

§ Examine if counters’ values change when repeating the measurements

§ Expose the counters to different levels of noise

§ Using NOIGENA (NOIse GENerator Application) developed in Jülich

§ NOIGENA processes were running on the odd processors
§ Inject different noise patterns using NOIGENA

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 6

Analysis Methodology

§ Produces shared-resource contention

§ Uses several benchmarks

§ Memory: Stream

§ Network: FzjLinkTest

§ I/O: IOR
§ Consecutively runs configurable

patterns

NOIse GENerator Application

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 7

Noise pattern used by NOIGENA to configure
the amount and duration of generated noise.

§ Instrument all call paths of the applications with Score-P using PAPI
§ We do the analysis for each counter, on all systems, with and

without injected noise to get the Score-P measurements for the:

§ 𝑎th application kernel (call path),

§ 𝑝th MPI rank,

§ 𝑡th OpenMP thread, and

§ 𝑖th repetition:

a counter value 𝒗𝒂,𝒑,𝒕,𝒊

Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 8

Analysis Methodology

June 20, 2023

Compare counter values across the repeated experiments for each
𝑎th application kernel (call path), 𝑝th MPI rank, and 𝑡th OpenMP thread
§ Find the arithmetic mean across the repetitions:

𝑣̅!,#,$ = mean(𝑣!,#,$,%)

§ Calculate the relative deviation from the arithmetic mean in percent:

𝑣!,#,$,% − 𝑣̅!,#,$
𝑣̅!,#,$

∗ 100%

à Use this metric to compare the counter results

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 9

Analysis Methodology

• Mini-app that mimics: finite element generation, assembly, and solution
• Unstructured grid problem, required by many engineering applicationsMiniFE

• Proxy app solves a Sedov blast problem with analytic answers
• Represents algorithms, data motion, and programming style typical in

scientific applications
LULESH

• Classical molecular dynamics code focusing on materials modeling
• We use the atomic fluid, Lennard-Jones (LJ) potentialLAMMPS

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 10

Application Benchmarks

For all of them, we used OpenMP and MPI for the measurements

Alias Name Nodes Processor RAM Network

CM DEEP-EST,
Cluster Module

50
2x Intel Xeon Skylake Gold
6146 CPUs
(12 cores, 24 threads)

192 GB DDR4 RAM
(2666 MHz) InfiniBand EDR (100 GBit/s)

ESB
DEEP-EST,
Extreme Scale
Booster

75
1x Intel Xeon Cascade Lake
Silver 4215 CPU
(8 cores, 16 threads)

48 GB DDR4 RAM
(2400 MHz), InfiniBand EDR (100 GBit/s)

Jureca
JURECA DC
Module, std.
compute nodes

480 2x AMD EPYC 7742 CPUs
(64 cores, 128 threads)

512 GB DDR4 RAM
(3200 MHz) InfiniBand HDR100 (100 GBit/s)

Jetson
OACISS,
Franken-cluster
Jetson ARM64

12x Jetson
Tegra TX1

1x Quad-Core ARM Cortex®-
A57 MPCore
(4 cores, 4 threads)

4 GB 64-bit
LPDDR4 RAM 1 GBit/s ethernet

Cyclops
OACISS,
Franken-cluster
Cyclops

1 2x 20c IBM Power9 CPUs
(20 cores, 80 threads) 384 GB of RAM

BNX2 10G Ethernet NICs, 2x
Infiniband EDR
(25 GBit/s)

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 11

Evaluation Systems

Application Configurations

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 12

s: problem size
n: number of computational nodes
p: the number of MPI processes
t: the number of OpenMP thread

Visualizing the results for each counter is not an easy task:

§ Three different application

§ Thousands of different call paths

§ Different resource configurations

§ Several repetitions per setup

§ Five different systems

§ Several hardware counters

§ Presence and absence of noise

To compare distinct counter à Scale the plots with the peak occurrence of the relative deviation

Evaluation Results

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 13

Distinct plots

Count relative metric (deviation from the mean)

Intensity (importance to the overall behavior)

Separate axes

§ Height = how often the corresponding relative deviation occurs

§ Intensity = share of the total counter value for that call path (importance)

§ Only call paths with > 1% of the total counter value are visible

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 14

Evaluation Results

Counter strongly influenced by noise:

§ Large distribution in the presence of noise,
small one in the absence

Counter with large deviation:

§ Large distribution disregarding the noise

§ Not suited for modeling

Evaluation Results:
How to Interpret the Results

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 15

Bad Counters [✘]

Counter robust against noise:

§ Similar distribution in the presence and
absence of noise

§ Small deviation (< 20%)

Counter to some extent robust against noise:

§ Small deviation (< 20%) without noise

§ Small deviation (< 20%) in the presence of
noise for significant call paths

Evaluation Results:
How to Interpret the Results

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 16

Good Counters [+] OK Counters []0

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 17

Evaluation Results:
Runtime

✘

✘

✘

✘

0

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 18

Evaluation Results:
Floating Point Operations

+ +

Evaluation Results:
Instructions, Cycles

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 19

+

+

0

0
0

0

Evaluation Results:
Instructions, Cycles

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 20

0 0

Evaluation Results:
L1, L2 Instruction Cache

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 21

+

✘
✘

+

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 22

Evaluation Results:
Stalls & Reference Cycles

✘

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 23

Evaluation Results:
L2, L3 Cache

✘

Impact of the Application:
Time and Load Inst.

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 24

LAMMPS MiniFELULESH

+
+

++
+

+

+

✘

✘

✘
✘

+

+✘

✘
✘

+

+

✘
✘
✘

✘
✘
✘
✘

✘
✘

Jureca
(AMD)

ESB (Intel) CM (Intel) Jetson
(ARM)

Cyclops
(IBM)

Floating point
ops./instr. ++ ++ ++ ++ ++
Cycles ✘ + + 0 0
Instructions ✘ + + + +
L1 + ✘ ✘ 0 +
L2 + 0 ✘ 0 +
L3 ✘ ✘ ✘

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 25

Best Practice User Guide

Legend
++ very good

+ good

0 ok
✘ bad

§ Examined noise resilience of hardware counters on five systems with
different architectures (Intel, AMD, ARM, IBM Power9)

§ Analyzed all available presets and a selection of native events

§ Most hardware counters are affected by noise, but still less than the runtime

§ Floating-point operations or instructions are noise resilient on all systems

§ Variability significantly depends on the system architecture

§ Best practice guide helps choose suitable counters for given system

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 26

Conclusion

Marcus Ritter, Ahmad Tarraf, Alexander Geiß, Nour Daoud, Bernd Mohr, Felix Wolf: Conquering
Noise With Hardware Counters on HPC Systems. In Proc. of the Workshop on Programming
and Performance Visualization Tools (ProTools), held in conjunction with the Supercomputing
Conference (SC22), pages 1–10, IEEE, 2022.

Conquering Noise With Hardware
Counters on HPC Systems

Marcus Ritter⇤, Ahmad Tarraf⇤, Alexander Geiß⇤, Nour Daoud†, Bernd Mohr†, Felix Wolf⇤

⇤Technical University of Darmstadt, Department of Computer Science, Germany
†Forschungszentrum Jülich GmbH, Jülich Supercomputing Centre, Germany

{marcus.ritter,ahmad.tarraf,alexander.geiss1,felix.wolf}@tu-darmstadt.de
{n.daoud,b.mohr}@fz-juelich.de

Abstract—With increasing system performance and complex-

ity, it is becoming increasingly crucial to examine the scaling

behavior of an application and thus determine performance

bottlenecks at early stages. Unfortunately, modeling this trend is a

challenging task in the presence of noise, as the measurements can

become irreproducible and misleading, thus resulting in strong

deviations from the actual behavior. While noise impacts the

application runtime, it has little to no effect on some hardware

counters like floating-point operations. However, selecting the

appropriate counters for performance modeling demands some

investigation. In this paper, we perform a noise analysis on

various hardware counters. Using our noise generator, we add

additional noise on top of the system noise to inspect the

counters’ variability. We perform the analysis on five systems

with three applications in the presence of various noise patterns

and categorize the counters across the systems according to their

noise resilience.

Index Terms—Hardware counters, performance analysis, noise,

high-performance computing, parallel programming

I. INTRODUCTION

In the dawn of the Exascale systems, scientific applications,
as well as the systems they are running on, are increasingly
growing in performance and complexity. To gain a deeper
understanding of the application behavior and to identify early
performance bottlenecks, massive complex analyses are usu-
ally performed, which are often linked to a lot of effort, time,
and costs. A much easier and still effective methodology to
study the scaling behavior and identify application bottlenecks
in an early stage is performance modeling, which has been
wildly used in the HPC domain [1]–[3]. While performance
modeling delivers good insight into the application behavior
and its scalability behavior, a lot of factors can affect the

This work was funded by the Hessian LOEWE initiative within the
Software-Factory 4.0 project. Moreover, this work received funding by
the Federal Ministry of Education and Research (BMBF), funding no.
NHR2021HE, and the state of Hesse (HMWK), funding no. Kapitel 1502,
Förderprodukt 19 NHR4CES as part of the NHR Program. We acknowledge
the support of the European Commission and the German Federal Ministry
of Education and Research (BMBF) under the EuroHPC Programmes DEEP-
SEA (GA no. 955606, BMBF funding no. 16HPC015) and ADMIRE (GA
no. 956748, BMBF funding no. 16HPC006K), which receive support from
the European Union’s Horizon 2020 programme and DE, FR, ES, GR,
BE, SE, GB, CH (DEEP-SEA) or DE, FR, ES, IT, PL, SE (ADMIRE).
Furthermore, this work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 449683531 (ExtraNoise project).

models and thus the quality of the analysis. Besides fac-
tors linked to sudden changes in the application behavior
(e.g., branch condition related to the number of ranks), other
sources, such as noise in its variable forms and occurrences
(see Section II), can also, influence the collected metrics and
thus lead to inaccurate performance models. In fact, examining
the performance of HPC applications in noisy environments
has a long research history [4]–[7]. In general, noise can
induce performance variability, which is the difference be-
tween execution times across repeated runs of an application
in the same execution environment [8]. For example, perfor-
mance variability can be a consequence of the variations in
the execution environment, such as different process-to-node
mappings [5] or thread-to-core mappings on NUMA systems
[8]. Nevertheless, in spite of several attempts, performance
variability is far from being eliminated and will remain an
active research area as several studies have suggested [7]–[10].

One way to increase the accuracy of the performance mod-
els is to utilize hardware counters, as several approaches have
shown [11], [12]. Power and energy estimation using hardware
performance counters already has wider applicability in the
HPC domain [13], [14]. While hardware counters exist on
many systems, choosing the best ones to enhance performance
models can be a challenging task. This becomes an even
more demanding task in the presence of noise, as several of
these counters are vulnerable to system noise. Traditionally,
hardware events such as floating point operations (DP OPS),
as shown in Fig. 1, are known to be resilient against noise,
as the short distributions in the presence (orange) as well as
in the absence (blue) of induced noise show (for a detailed
description, see Section III-F). On the other hand, considering

Fig. 1. Example showing the relative deviation from the arithmetic mean of
the floating point operations (DP OPS) and the runtime on the CM cluster
for the three benchmarks examined in the paper.

§ Create a tool that performs the analysis and evaluation on the system

§ Examine more counters (i.e., native counters)

§ Examine the correlation between the counters

§ Identify the source of variation

§ Started working with the PAPI developers

June 20, 2023 Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 27

Future Work

Acknowledgment

20 June 2023 Department of Computer Science | Laboratory for Parallel Programming | Dr. Ahmad Tarraf 28

Questions?

Thank you for your attention!

June 20, 2023

Department of Computer Science | Laboratory for Parallel Programming | Felix Wolf 29

