
Interactive Visualization
of Binary Code for

Investigating Compiler
Optimizations

Shadmaan Hye
Graduate Student, University of Utah

June 19, 2023

Scalable Tools Workshop

Problem: Labor Intensive Compilation Analysis

Enable Code Developers to understand what
optimization compiler is doing to the code
through a visualization system

2

Main Goal
To improve the human side of compilation analysis

with visualization

Our Visualization Interface

Take binary file
compiled with debug
flag as input

File structures
shown here

Source code shown in
Source: [file.name] tab

Disassembly code
shown in order

Disassembly
code and
current location
overview

Loop Structure

Register to
Variable
Translation

3

Obtaining Disassembly Info

Loop
structure

Code

Correspondence

Register to
Variable

Translation

Binary Input

Debug flag

A Binary Analysis and
Modification Framework

Generates info about the binary
Access to local (stack) variables

Disassemble

Disassembly
code

4

Disassembly View

No vertical space between blocks of one function

Vertical space between blocks of different function

Block Header:
Function_name: B<Unique id>

Block Body:
Address: operator operand, operand

5

Focus on Loops for Optimization

Programs spend the most
time executing loops

Understanding which
instructions are executing
multiple times is vital Focus on Loops

6

Ideal Loop Constructions

loop_1:1/3

loop_1.1:1/2

loop_1:2/3

non-loop blocksLoop 1

Loop 2

loop_1.1.1:1/2

loop_1.1:2/2

Nested loops

loop_1:3/3

First Level loop blocks

Second Level loop blocks

Colors used for clarity

loop_1.1.1:2/2

Loop 3

Third Level loop blocks

Blocks ordered by Virtual Memory Address

● Indentation: Nested Loop blocks

● Numbering loop blocks:
Eg. Block with indication loop_1.1.1:2/2

loop_1.1.1:2/2

1st loop of
the function 3rd level loop 2nd block out of 2

total blocks in the
particular loop

7

Real Case for Loops

loop_1:1/3

loop_1.1:1/2

loop_1:2/3

Loop 1

Loop 2

loop_1.1.1:1/2

loop_1:3/3

loop_1.1.1:2/2

Loop 3

Blocks ordered by Virtual Memory Address

Blocks in a particular loop are not
ordered sequentially

loop_1.1.1:2/2

1st loop of
the function 3rd level loop 2nd block out

of 2 total
blocks in the
particular loop

loop_1.1:2/2

non-loop blocks

Nested loops

First Level loop blocks

Second Level loop blocks

Colors used for clarity

Third Level loop blocks

8

RAJA Performance Suite

Pseudo Loop Blocks Proposal

loop_1:1/3

loop_1.1:1/2

loop_1:2/3

Loop 1

Loop 2

loop_1.1.1:1/2

loop_1:3/3

loop_1.1.1:2/2

Loop 3

loop_1.1:2/2

loop_1.1:2/2

loop_1.1.1:2/2

● Hard to understand which blocks are in
single loop.

● To avoid confusion Pseudo-loop blocks
are introduced.

● Dotted blocks arrange the instruction
blocks of a particular loop together.

Loop blocks have different orders.

non-loop blocks

Nested loops

First Level loop blocks

Second Level loop blocks

Colors used for clarity

Third Level loop blocks

Pseudo-loop
blocks

9

Pseudo Loop Blocks

In Memory Address order,
the pseudo loop blocks are
inserted to maintain logical
order of blocks inside a loop

When pseudo
blocks are clicked

Highlights the
original block

10

Order of Disassembly View

Loop blocks visualized in
2 approaches:

1. Memory Address
Order of instructions
according to memory address

2. Loop Structure
- Order of instructions
according to loop
structure.
- Reordering blocks out of
address order

11

Loop Backedges

Becomes
difficult to

visualize at a
glance

Backedges
intersect with
each other
when using
original blocks

To avoid
difficulty,

pseudo loop
blocks used
instead of

original blocks.

12

Minimap Overview

Minimap created to get the disassembly overview

Each rectangle height - no. of instructions in
blocks
Light Grey Lines - System defined functions
Dark Grey Lines - User defined functions
Dotted Lines- Pseudo loop Blocks
Indentation- Nested loops
Brush- Current Location

13

Multiple Disassembly Views

Multiple disassembly views
with different colors

For visualizing multiple source
code at once

For example-

Dis View 1 - Green
Dis View 2 - Yellow
Dis View 3 - Orange and so on

14

Bidirectional & Many to many relation

In addition with Dyninst,
CcNav corresponds source and
disassembly code in both ways.

15

Other features

Description of the operands are shown
in the tool tip

Arrows used to represent which
lines have correspondence

16

Other features (continued)

Dyninst gives information regarding
variables which are renamed in the
disassembly code

The function names are also truncated to a fixed
length

17

Original CcNav
The new features focus more on source & disassembly code matching
Integrate into a larger project

18

Thank you!

Main Goal: To improve the human side of compilation analysis with visualization

Name: Shadmaan Hye
Email: praptishadmaan@gmail.com
Github: https://github.com/Prapti-044/dis-viz.git

20

mailto:praptishadmaan@gmail.com
https://github.com/Prapti-044/dis-viz.git

	Slide 1: Interactive Visualization of Binary Code for Investigating Compiler Optimizations
	Slide 2: Problem: Labor Intensive Compilation Analysis
	Slide 3: Our Visualization Interface
	Slide 4: Obtaining Disassembly Info
	Slide 5: Disassembly View
	Slide 6: Focus on Loops for Optimization
	Slide 7: Ideal Loop Constructions
	Slide 8: Real Case for Loops
	Slide 9: Pseudo Loop Blocks Proposal
	Slide 10: Pseudo Loop Blocks
	Slide 11: Order of Disassembly View
	Slide 12: Loop Backedges
	Slide 13: Minimap Overview
	Slide 14: Multiple Disassembly Views
	Slide 15: Bidirectional & Many to many relation
	Slide 16: Other features
	Slide 17: Other features (continued)
	Slide 18: Original CcNav
	Slide 20: Thank you!

