
HPCToolkit: Experiences at Exascale

Jonathon Anderson

Rice University

STW 2023

June 19, 2023

The Team

• PI: John Mellor-Crummey

• Staff

– Mark Krentel, Laksono Adhianto, Marty Itzkowitz, Wil Phan, Matt Barnet

• Students

– Jonathon Anderson, Yumeng Liu, Dejan Grubisic, Dragana Grbic

2

Recap: Preparing HPCToolkit for Exascale

• No other tool provides detailed performance analysis at scale!
• The problem: performance data at scale is huge and slow to process!
• Two-pronged solution, next slides

3

Recap: Efficient Sparse Formats for Performance Data

4

Profile-Major-Sparse (PMS):
 data for each profile is contiguous

Context-Major-Sparse (CMS):
 data for each context is contiguous

Recap: Highly-parallel Multithreading for Performance Analysis

5

Recap: Preparing HPCToolkit for Exascale

• End result: Stellar improvements for GPU-accelerated codes!
– Running PeleC on 512 nodes of Perlmutter, ~17.1 PFLOPs
– Size reduction from sparsity: 14.3 TB ➙ 11.4 GB (1254x)
– Min. node reduction from threading: 16 nodes ➙ 1 node
– Overall time reduction: 2.7 hr ➙ 2 min (81.3x)

• Also significant improvements for CPU-only cases
– For details, see our paper in ICS‘22

6

7

Last year, the only question asked was

Have you used this at Exascale?

Today, the answer to that question is

Yes, we have.

HPCToolkit Improvements for Frontier I
● HPCToolkit built and (mostly) ran with no change, but we made improvements for Frontier
● hpcrun

– Bug fix: corrected support for Cray OpenMP

– Improved how CPU threads are mapped to MPI ranks
● now using job launcher variables: independent of any MPI version

– Added support to boost resolution of CPU traces
● collect CPU callstack when offloading GPU operations

● hpcstruct

– Use OpenMP to inspect profiles to identify CPU and GPU binaries involved in the execution
● Reduces preparation for binary analysis of an hpctoolkit database to seconds

8

HPCToolkit Improvements for Frontier II
● hpcprof

– Bug fix: handle truncated reads on network file systems
● hpcviewer

– Reduced memory footprint when viewing large profiles and traces

– Improved performance and usability of graphing metrics for many execution contexts

– Corrected handling of corner cases at trace start and end

9

Remaining Issue: Poor Multi-node Performance of hpcprof

10

>77% deviation

Slowdown w/ >1 node

Remaining Issue: Serialized I/O

12

B
uf

fe
re

d
I/O

Parallel I/O

First Taste of Exascale ‒

13

First Taste of Exascale ‒ False Start
● Large-scale jobs on Frontier regularly fail, and fail immediately

– MPI bootstrap barrier times out after 2 minutes and fails the job

– Unrelated to node crashes (which happen less immediately)

● OLCF Help: “Orion can’t serve libraries + executable for many nodes under 2 minutes”

● Recommended solution: copy all libraries to node-local NVMe first

– User Guide “example” batch script is 60 lines long

– Uses LD_LIBRARY_PATH, conflicts with Spack’s RPATH

● Spark discussion for alternative solutions. Spindle?

● Data on following slides collected in April, failure occurs much more frequently since

14

First Taste of Exascale ‒ Leviathan

• Strong-scaling LAMMPS, large problem, short simulation
– Up to 8192 nodes, ~1.6 EFLOPs (theoretical peak)
– Lennard-Jones, up to 1.77 trillion atoms (216M atoms/node)
– Runs for 7900 timesteps, 18.4 minutes (under measurement)

• Analysis

– Final size: 0.793 TB

– Analysis time, single node: 36 minutes

15

First Taste of Exascale ‒ Smaug

• Strong-scaling LAMMPS, small problem, long simulation
– Up to 8192 nodes, ~1.6 EFLOPs (theoretical peak)
– Lennard-Jones, up to 34 billion atoms (4.1M atoms/node)
– Runs for 110 thousand timesteps, 19.7 minutes (under measurement)
– Boosted CPU trace resolution, approximates Leviathan for 4.3 hours

• Analysis

– Final size: 5.68 TB

– Analysis time, single node: 1 hour, 40 minutes

16

18

● Smaug configuration, 4096 nodes
● Later run, after hpcrun improvements
● Total size: 2.85 TB

● X11 over SSH tunnel from Frontier
● ssh -Y frontier.olcf.ornl.gov

● Rendering on a virtual desktop at Rice
● Hpcviewer 2023.05

29

30

31

32

33

34

35

Work in Progress
● Eliminating the I/O bottleneck in hpcprof

● Building a new remote hpcserver, companion to hpcviewer

– Will load up the entire database in the memory of several compute nodes

– Serves from memory, directly to an hpcviewer client on your laptop

● Collaborating with AMD on a new ROCm tools interface

– Awaiting support for PC samples for non-root users

● Developing a Python API and library for performance data analysis

– Supports automated and exploratory analysis of large-scale performance data

– To be used for regression testing and validation

● Testing and tuning HPCToolkit on Sunspot (TDS for Aurora)

36

	Preparing for Performance Analysis at Exascale
	Slide 2
	Recap: Preparing HPCToolkit for Exascale
	Recap: Efficient Sparse Formats for Performance Data
	Recap: Highly-parallel Multithreading for Performance Analysis
	Recap: Preparing HPCToolkit for Exascale
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

