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» Between runs, execution times differ widely: STABILITY

» Performance measurements have been carried out but are they
meaningful ? QUALITY/RELIABILITY

» The same loop is executed billions of times, do all of instances have
a similar behaviour ? VARIABILITY

We will review each issue and present how MAQAO/QV is handling it.

Problems listed above have a wide range of applicability (from unicore
all of the way to full multinode systems). In this talk, we will focus on
single node cases.



Exascale oo MAQAO ONE View @

4

» MAQADO is a performance analyzis and optimisation framework
operating at binary level developed at UVSQ since 2004

« Complementary modules, each of them focusing on one aspect
of performance analysis: profiler, static analyzer, simple
simulators, value profiler, decremental analyzer, ...

« Support for Intel/AMD x86-64 and ARM (ongoing)
e http://www.magao.org

» ONE View: Performance View Aggregator module

« Goal: Guiding the user through the analysis & optimization
process

« Automatizes execution of experiments invoking other MAQAO
modules and aggregates their results to produce high-level
reports in HTML or XLSX format
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UNSTABILITIES BETWEEN DIFFERENT
EXECUTIONS
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DETECTION

» Needs multiple runs and to have meaningful statistics, several tens
of runs needed, typically at least more than 30...

» Costly but necessary: unless you perform multiple runs, you have no
iIdea of potential unstabilities.

ANALYSIS
» Statistics on total execution times are interesting but not enough
» More detailed statistics are needed
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MAQAO/QV approach. We provide a dedicated operating mode which
automatically:

» Manages and launch K runs separated by P seconds: K and P being
parameters set by the user

» Performs statistical analysis of the K global execution times.

» Performs comparative and statistical analysis at the function level.
Fundamental to pinpoint the guilty function(s) creating unstabilities.
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GROMACS running on a 128 cores EPYC2 (ROME/ZEN2)
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31 runs
Profiled Time
min \ med \ avg \ max \
86.85 108.72 102.11 118.28
Percentilelndex 10 | 20 30 | 40 50 = 60 | 70 @ 8 9 100 |
Value 87.23 87.57 88.81 94.69 108.69 108.82 109.18 110.39 111.41 118.28

Count

1 I | 1 I
86.85-8842 8999-9156 93.14-9471 96.28-97.85 99.42- 100.99102 .56 - 104.1405.71 - 107 2808.85 - 110.42111.99 - 1135711514 - 116.7118.28 - 119.85
Ranges
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GROMACS running on a 128 cores EPYC2 (ROME/ZEN2)

31 runs
» Colums Filter _
Time w.r.t. min (Time avg (Time med (Time max (Time ~
Name Module Wall Time w.r.t. Wall w.r.t. Wall w.r.t. Wall w.rt.Wall @
(s) Time) (s) Time) (s) Time) (s) Time) (s)
o _mpc_omp_callback_run "brg%cg"gp's 17.25 12.37 15.94 17.35 18.33
o _m pc_thread_ethread_mxn_engine_func_kernel_thread “bmf(,:\tt]\riad' 15.79 14.79 15.70 15.72 17.22
» void _INTERNAL7040d793::clearBufferFlagged<3>(nbnx libgromacs_m

[ n_atomdata_t const&, int, gmx::ArrayRef) pi.s0.8.0.0 1.72 1.97 7.80 11.54 12.6

o _mpc_common_spinlock_trylock "Ln;';"(‘;‘t)u'd""" 8.34 5.86 7.46 7.59 8.8

> fft5d_execute(fftSdiplan_t*, int, gmx_wallcycle™) Ilt;gromoags;m 5.5 5.49 6.47 5.73 11.66

[ » nbnxn_atomdata_add_nbat_f to_f_reduce#0xcbh8665 Iltg)gi]r:)(}mga%sam 5.08 0.84 3.36 4.89 5.4

Min, avg, med and max are computed over the 31 runs.

With that info, The issue could be tracked down to a memory leak in
the runtime library.
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MEASUREMENT « QUALITY »
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Exasca’e 0O OUR APPROACH: ADDITIONAL CHARACTERISTICS @

How much can the user trust our recommendations ??

» Measurement intrusiveness can severely pollute measurement:
probe code could be heavy and distort measurement but also
gathering too much measurement data can perturb cache behavior

» When using sampling, too few samples might be the sign of low
“quality” and unstable measurement.

» When using tracing, measuring too short durations within an
Oo00O machine might lead to low level quality measurements: any
duration measured under 500 cycles is subject to caution. Any
duration measured under 100 cycles is close to noise.
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Exasca’e O MAQAO/ONE VIEW APPROACH @

MEASUREMENT INTRUSIVENESS

>

>
>

All of MAQAO/QV instrumentation are performed at the binary level :
we analyse what we are running

Probe code is carefully designed in order to limit performance impact

Probe overhead is evaluated and correction are performed on the
measurements carried out.

Try to limit amount of data gathered: select carefully loops to be
Instrumented, and for example, for most of measurement no
timestamps are collected (and therefore such a restriction prevents
timelines production).

SAMPLING INSTRUMENTATION QUALITY

>

Any element (function, loop) with too few samples is flagged to the
user with simple color code: measurements corresponding to less
than 100 (resp. 300) samples are displayed in red (resp. orange)
cells.
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TRACING INSTRUMENTATION QUALITY

» Similar strategy as for sampling quality: report directly to the user
cases with durations less than 200 cycles.

» Rely on multiple execution of the same loops and measurement
variability across instances (more details in the last part of the talk).

12
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PERFORMANCE VARIATIONS ACROSS
MULTIPLE LOOP INSTANCES WITHIN A
SAME RUN
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TWO ISSUES

DETECTION

» Are execution times more or less constant across loop instances
» If not, how are they distributed

ANALYSIS

» Can we exploit performance variations for optimization

» Is variation correlated with loop iteration count?

» Is variation correlated with call sites ? Or other loop parameter ?

14
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» Define Cycle per Iteration (CPI) and not execution time as the metric of

Interest.

» Define CPI Bucket: Bucketl: CPI between 1 and 2 cycles, Bucket2: CPI
between 2 and 4 cycles, Bucket3: CPI between 4 and 8 cycles and so on...

REMARK: lower and upper bound of a CPI bucket is a parameter and as such
can be changed.

» Perform a full tracing measurement of all instances for a few selected loops.
All individual measurements are not kept:

« Compute general metrics: min, max, average values across all
iInstances

« Count number of instances per CPI bucket: for example count the
number instances belonging to Bucketl i.e. instances with a CPI
between 1 and 2 cycles

» For each CPI bucket, keep 31 instance numbers which will be used in a
more detailed performance analysis.

REMARK: value of 31 has been chosen so as to be able to build worthwhile
statistics

15
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Second hottest loop
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» First Run: identify loop of interest
 [INPUT: whole program
« OUTPUT: a few loop identifiers
« By default, same loop identifiers for all threads

» Second Run: identify buckets
« INPUT: A few loop identifiers

« OUTPUT: for each loop, a few buckets and for each bucket, a
few instance numbers

* Buckets (and instances within a bucket) are generated
independently for each thread

» Third Run: generate performance numbers using DECAN
 Measurements are performed per thread and per bucket
« For each loop and bucket in a thread, a typical representative will
be the median

20
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| |Thread1 |Thread 2 | Thread 3_

Loop Bucket2 Bucket2 Bucket 2

Instances 8, 12,15, 7,12,13, 1,5, 8,9,
35,36,... 16,17, ...

Median 35 17

Bucket3 Bucket3

1,3,5,6, 4,5,6, ...
13, 14, 18
Median 14

Instances in red are those that will be monitored by tracing

21
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» Goal: modify the application to
» Identify cause of bottlenecks
« Estimate associated performance impact

» Differential analysis:
« Targets innermost loops
« Transforms loops
« Compare performance of original and transformed copy

» Transformations
 Remove or modify groups of instructions
« Targets memory accesses or computation

« Modified loops provide wrong results but that's OK because we
are only interested in performance. All of the modified loops are
run in a protected sand box environment.

22
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Typical transformations/variants:
» FP: only FP arithmetic instructions are preserved
= =>|opads and stores are removed
» LS: only loads and stores are preserved
= => compute instructions are removed
» FES: only control flow instructions are preserved
= => compute instructions are removed

Comparing T(FP) (Time spent in FP variant) and T(LS) (Time spent in LS variant)
allows us to quantify how much a loop is CPU bound versus data access bound
» DL1: memory references replaced with constant memory address
= => for loops, data now accessed from L1: precise impact of perfect
blocking

23
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404e3d: movaps -0x4(%r9,%r10,4),%xmm3
404e43: movaps 0xc(%r9,%rl0,4),%xmm1ll

404e49: SZP mm3,Mexmm

404edc: cvtps2pd %xmmll, %xmml2

404e50: mulpd %xmmo0,%xmmd

404e54: mulpd %xmm0,%xmml2 J F P LS
404e59:; Wﬁ“m_%xmm.imxmmi

404e5c: movhlps %xmmll, %xmmll l

404e60: (cvips2pd %xmm3,%xmm5 1

404e63: cvtps2pd %xmmll,%xmmil3

404e67: mulpd %xmm0,%xmm5

404e6b: mulpd %6xmmo,%xmm1l3 J

404e70: movaps -Ox4(%%r8,%r10.4),%xmm2
404e76: movaps 0xc(%r8,%rl0,; 4),%xmm10
404e7c:
404e7f: cvtps2pd %xmrnl.o %xmrn14
404e83: addpd %%xmmd, %xmmb
404e87: addpd %xmm1l2,%xmmld

404e8c: cvtpd2ps %xmm6,%xmm9 )
404e91: movhips %exmm2, Y%xmma
404e94: movhips %xmml0,%xmml0
404e98: 52 xmmZ Sexmm 40483d:
404e9b: cvtps2pd %xmml0,%xmml5 aD4ed3:
404e9f: cvtpd2ps %xmml4,%xmm2 404e49; pd M3, %xmm '
404ead: addpd %%xmm5.%xmm7 404edc: cvtps2pd %xmmll, %xmml2
404eaB: addpd %xmml3,%xmml5 404e50: mulpd N.xrnmo LSaxmmd
404ead: cvtpd2ps %xmm7,%xmme 404e54: o
404eb2:  \cvtpd?ps %xmm1l5 %xmmls J 404e59: movhips %xmmB Foxmm3 404e59: 1 movhips %axmm3 %exmm3 }
- 404e5c: movhips %xmmll, %xmmll 404e5c: Foexmmll,Yexmmll
404eb7: movlhps %xmma8,%xmm9 404660: cvtps2
404ebb: movihps %xmml5,%xmma2 404e63: cvips2pd %xmmll, %xmml3
404ebf: movaps %xmmo,-0x4 (%ard, %rio, 4 404e67: mulpd %xmm0,%xmmS
404ec5: ! , 404e6b: I 3 }
prypre
404ect: |cmp %rbp,%r10 _ _ 404e76; 5 Oxc (SorB, 6r10,4),Hoxmm10
404ed2: |jb  404e3d <saxpy2 +0x14d= oo R e
404e83: addpd %%xmmd, Sxmmb
404e87: addpd %xmml2, %xmm:l.‘
404e8c: P
404e91: 404e91: movhips %exmmaz2, %exmm2 )
404e94; H F%xmml0, Yexmml0
404e98: :vbs!pd %xmrnz %xrnrn‘f
404e9b: 10,% 15
404e9f: :vtpd!ps Faxmmld, ¥xmm2
404ea9: addpd %xmmS,%xmm7
404ea8: addpd %xmml3,%xmml5
Ref 404ead: cvtpd2ps %xmm7,%xmms
404eb32: SpiLAr L i Y
404eb7: movlhps %xmm8,%xmm9 404eb7: rmvlhps SHxmmB, %xmma
404ebb: 1h 9, 15.9% 2 404ebb: N
4ndebf:
404ecs:
404ech: add $0xB,%rl0 404ech:
A04ecf: cmp  %rbp,%rlo 404ecf: cmp  %rbp,%rl0

A0ded2: j 404ed2: it abde3d +0xldd>
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For the 31 timing measurements performed within a bucket, Stability (STA) is
defined as:

STA = (Median Time — Minimum Time) / Minimum Time
» Low values for STA means that there is little variation between instances
» On the contrary, large values for STA means large variations across instances
For each bucket/loop/thread, the median value within a bucket is used as a
representative, then minimum, median and maximum can be computed over
threads and STA across threads can be computed
Alternatively, we can bundle together for a given loop and a given bucket all of the

measurements and again, minimum, median, maximum can be computed and
another STA across threads is computed.

25
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Expert Summary

/> Colums Filter

ORIG REF FP LS

Coverage (cycles | STA | (cycles STA (cycles

(cycles STA

= (ﬁ ;2;" per ORIG per (REF) per | (FP)} per per |(FES):
iteration) teration) iteratio teration eration)
¥ Loop 745 47.89 | 42417 §0.75 ] 383.18 [0.54 31.00 §/0.02) 391.19§0.60) 33.23 29.64 (0.02

o Bucket9 | §97.71 42417 §0.75 | 383.18 0.54 31.00 §/0.02] 391.19 §0.60§ 33.23 §0.02 |} 29.64 |0.02

Bucket 8 1.65 361.38 | 0.52 | 380.66 |0.58| 31.05 }|0.02) 346.08 §0.45] 33.42 }0.02 0.02

(=)

o Bucket 10 §0.575 NA NA NA
o Bucket 11 0 NA NA NA
o Bucket 12 0 NA NA NA

Hottest MINIQMC loop 16 threads run on SKLs

26
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wo_omp.cpp: 259 - 259

[Bucket 9-97.71% v |
Show all results

Metric (average per iteration except for Time and

-+)
Walue OMPoffload.hpp: 188 - 18

DL1 LS FP ‘ FES ‘
6380.00 5952.005691.00

32.69  266.14 30.56 29.20

33.23 [1391.19 31.00 29.64

. 372.33 3362 37473 31.34 2969
479.88 456.24 | 45.78 @ 465.94  42.27 31.05

N Cycles Per Iteration (Median across each thread median values)

2 + zs] + c[2] * coefs[index +

267.47

27
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450 4
400 4
350
300 —
2504
2004
150 —
100 4
50
0 —
]
Thread
Deviation accross all processes: 36.152 Score: 1 - average
Deviation accross all instances: 0.699 Score: 2 - bad

Total Score: 3 (lower is better)

28
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A4 @
"Buckst 9- 97 71% v |
| Show summarized results ‘
Metric (average per iteration except for ORIG
Time and lteration Count)
Min Med Avg Max Min Med Max
(Thread) (Thread) (Thread) (Thread) (Instances)(Instances)(Instances)

Time 50170.00 78576.7593104.00 46616.00 79181.00 121238.00
CPI MED 261.30 409.25 484.92 24279 41240  631.45
lteration Count 192.00 192.00 192.00 192.00 192.00  192.00 = 192.00

29

Min (Thread) means each thread is represented by its median across
instances and Min is across these threads representatives
Min (Instances) means all of the measurements for threads and instances

are merged together and Min is computed on that list
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LS
Min Med Avg Max Min Med Max
(Thread) (Thread) (Thread) (Thread) (Instances)(Instances)(Instances)
49226.00 69750.25 82064.00 46982.00 73059.00 124000.00
256.39 363.28 427.42 244.70 380.52 645.83

192.00 192.00 192.00 192.00 192.00 192.00 192.00

FP

Min Med Avg Max Min Med Max
(Th read)‘(Th read) (Thread) (Thread)(Instances)(Instances)/(Ilnstances)
5940.00 5952.00 5950.88 5964.00 5846.00 5952.00 21780.00
30,94  31.00 30.99 31.06 30.45 31.00 113.44
192.00 192.00 192.00 192.00 192.00 192.00 192.00
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Exascale oo CONCLUSION AND FUTURE DIRECTIONS (€)

» Three important issues have been presented: unstabilities between
runs, measurement quality, and performance variability

» We have demonstrated how MAQAQO/OV tackles these 3 issues in a
single environment and provides very useful insights;

FUTURE DIRECTIONS
» Perform more advanced “statistics” on the data gathered

» For performance variability, MAQAO techniques are focussing on
loops and they should be extended to parallel OpenMP regions and
functions

Define anomaly/unstability categories

Automate anomaly/unstabilities detections

Build a database of anomalies/unstability issues, including causes.
Extend to multi-nodes

YV V V VY
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» MAQAO website:

 Documentation:
= Tutorials for ONE View, LProf and CQA
= Lua APl documentation

« Latest release:
= Binary releases (2-3 per year)
= Core sources

* Publications around MAQAO:

32


http://www.maqao.org/
http://www.maqao.org/documentation.html
http://www.maqao.org/downloads.html
http://www.maqao.org/publications.html
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BACKUP SLIDES
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Same code is run a large number of times to study measurement stability. Standard
statistics (deciles) are computed. An extra xIsx file is produced.
KBL 4 cores. Lulesh2.0

Total Time

min | med | avg | max |
5.3 5.53 5.93 7.59
Percentile Index 10 |20 30 | 40 | 50 60 | 70 | 80 90 | 100 |
Value 537 54 543 547 552 557 567 7.03 726 7.59

Count
v

T T T T T T T T T T T 1
530-541 553 - 564 5.76 - 5.87 599-6.10 6.22-6.33 6.45 - 6.56 6.67-6.79 6.90 -7.02 713-7.25 7.36-7.48 759-7.70

35
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Same code is run a large number of times to study measurement stability.
Going at the function level allows to quickly identify delinquent functions
Min, max, avg, med are computed over the 100 runs.

Name Module min (Max Time Over avg (Max Time Over med (Max Time Over | max (Max Time Over
Threads) (s) Threads) (s) Threads) (s) Threads) (s)
o omp_get_num_procs Ilbg]og%.so. 0.71 1.14 0.9 2.24
o std..veclor =..operator(j(unsigned fong) Toresn 2.0 U1 051 U.ST U.67
» CalcFBHourglassForceForElems(Domain&, double®, double*, double*, do
uble*, double*, double*, double®, double, int, int) [clone ._omp_fn.7] lulesh2.0 0.34 0.42 0.41 0.5%
» EvalEOSForElems(Domain&, double*, int, int*, int) [clone ._omp_fn.17] lulesh2.0 0.28 0.35 0.35 0.46
> CaIcEIemFPHourglastorce(d*ouble*, double*, double*, double (*) [4], do lulesh?.0 0.19 0.5 0.24 0.33
uble, double*, double*, double*)
» CalcEnergyForElems(double*, double*, double*, double*, double*, doubl
e*, double*, double*, double*, double*, double*, double*, double*, double,
double, double, double, double, double*, double*, double, double, int, int lulesh2.0 0.15 0.20 0.2 0.27
*) [clone ._omp_fn.20]
» CalcMonotonicQGradientsForElems(Domain&) [clone ._omp_fn.14] lulesh2.0 0.16 0.20 0.2 0.26
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