
1

Detecting/Analyzing Unstable Performance

Behavior

Cédric Valensi, Emmanuel Oseret, Hugo Bolloré, Mathieu Tribalat, Kevin Camus,

William Jalby (UVSQ/ECR/University Paris Saclay)

cedric.valensi@uvsq.fr , emmanuel.oseret@uvsq.fr, william.jalby@uvsq.fr,

mathieu.tribalat@uvsq.fr, kevin.camus@uvsq.fr

http://www.maqao.org

With ECR, INTEL, CEA, SiPearl, ATOS and UVSQ support

mailto:cedric.valensi@uvsq.fr
mailto:emmanuel.oseret@uvsq.fr
mailto:william.jalby@uvsq.fr
mailto:mathieu.tribalat@uvsq.fr
mailto:kevin.camus@uvsq.fr
http://www.maqao.org/

2

TYPICAL ISSUES

➢ Between runs, execution times differ widely: STABILITY

➢ Performance measurements have been carried out but are they
meaningful ? QUALITY/RELIABILITY

➢ The same loop is executed billions of times, do all of instances have
a similar behaviour ? VARIABILITY

We will review each issue and present how MAQAO/OV is handling it.

Problems listed above have a wide range of applicability (from unicore
all of the way to full multinode systems). In this talk, we will focus on
single node cases.

3

MAQAO ONE View

➢ MAQAO is a performance analyzis and optimisation framework
operating at binary level developed at UVSQ since 2004

• Complementary modules, each of them focusing on one aspect
of performance analysis: profiler, static analyzer, simple
simulators, value profiler, decremental analyzer, …

• Support for Intel/AMD x86-64 and ARM (ongoing)

• http://www.maqao.org

➢ ONE View: Performance View Aggregator module

• Goal: Guiding the user through the analysis & optimization
process

• Automatizes execution of experiments invoking other MAQAO
modules and aggregates their results to produce high-level
reports in HTML or XLSX format

4

UNSTABILITIES BETWEEN DIFFERENT

EXECUTIONS

5

UNSTABILITIES BETWEEN DIFFERENT EXECUTIONS

DETECTION

➢ Needs multiple runs and to have meaningful statistics, several tens
of runs needed, typically at least more than 30…

➢ Costly but necessary: unless you perform multiple runs, you have no
idea of potential unstabilities.

ANALYSIS

➢ Statistics on total execution times are interesting but not enough

➢ More detailed statistics are needed

6

UNSTABILITIES BETWEEN DIFFERENT EXECUTIONS

MAQAO/OV approach. We provide a dedicated operating mode which
automatically:

➢ Manages and launch K runs separated by P seconds: K and P being
parameters set by the user

➢ Performs statistical analysis of the K global execution times.

➢ Performs comparative and statistical analysis at the function level.
Fundamental to pinpoint the guilty function(s) creating unstabilities.

7

ISOBINARY: STABILITY RUNS (1)

GROMACS running on a 128 cores EPYC2 (ROME/ZEN2)

31 runs

8

ISOBINARY: STABILITY RUNS (2)

Min, avg, med and max are computed over the 31 runs.

With that info, The issue could be tracked down to a memory leak in

the runtime library.

GROMACS running on a 128 cores EPYC2 (ROME/ZEN2)

31 runs

9

MEASUREMENT « QUALITY »

10

OUR APPROACH: ADDITIONAL CHARACTERISTICS

How much can the user trust our recommendations ??

➢ Measurement intrusiveness can severely pollute measurement:
probe code could be heavy and distort measurement but also
gathering too much measurement data can perturb cache behavior

➢ When using sampling, too few samples might be the sign of low
“quality” and unstable measurement.

➢ When using tracing, measuring too short durations within an
OoO machine might lead to low level quality measurements: any
duration measured under 500 cycles is subject to caution. Any
duration measured under 100 cycles is close to noise.

MAQAO/OV Nov 2022

11

MAQAO/ONE VIEW APPROACH

MEASUREMENT INTRUSIVENESS

➢ All of MAQAO/OV instrumentation are performed at the binary level :
we analyse what we are running

➢ Probe code is carefully designed in order to limit performance impact

➢ Probe overhead is evaluated and correction are performed on the
measurements carried out.

➢ Try to limit amount of data gathered: select carefully loops to be
instrumented, and for example, for most of measurement no
timestamps are collected (and therefore such a restriction prevents
timelines production).

SAMPLING INSTRUMENTATION QUALITY

➢ Any element (function, loop) with too few samples is flagged to the
user with simple color code: measurements corresponding to less
than 100 (resp. 300) samples are displayed in red (resp. orange)
cells.

12

MAQAO/ONE VIEW APPROACH (2)

TRACING INSTRUMENTATION QUALITY

➢ Similar strategy as for sampling quality: report directly to the user
cases with durations less than 200 cycles.

➢ Rely on multiple execution of the same loops and measurement
variability across instances (more details in the last part of the talk).

13

PERFORMANCE VARIATIONS ACROSS

MULTIPLE LOOP INSTANCES WITHIN A

SAME RUN

14

PERFORMANCE VARIATIONS

TWO ISSUES

DETECTION

➢ Are execution times more or less constant across loop instances

➢ If not, how are they distributed

ANALYSIS

➢ Can we exploit performance variations for optimization

➢ Is variation correlated with loop iteration count?

➢ Is variation correlated with call sites ? Or other loop parameter ?

MAQAO/OV Nov 2022

15

MAQAO/ONE VIEW APPROACH: DETECTION

➢ Define Cycle per Iteration (CPI) and not execution time as the metric of
interest.

➢ Define CPI Bucket: Bucket1: CPI between 1 and 2 cycles, Bucket2: CPI
between 2 and 4 cycles, Bucket3: CPI between 4 and 8 cycles and so on…

REMARK: lower and upper bound of a CPI bucket is a parameter and as such
can be changed.

➢ Perform a full tracing measurement of all instances for a few selected loops.
All individual measurements are not kept:

• Compute general metrics: min, max, average values across all
instances

• Count number of instances per CPI bucket: for example count the
number instances belonging to Bucket1 i.e. instances with a CPI
between 1 and 2 cycles

• For each CPI bucket, keep 31 instance numbers which will be used in a
more detailed performance analysis.

REMARK: value of 31 has been chosen so as to be able to build worthwhile
statistics

16

CPI DISTRIBUTION: 1 BAR

QMCPACK 2 threads running on SKL

17

CPI DISTRIBUTION: 2 BARS

CHAMP (Twente Univ/TREX) 1 threads running on SKL

18

CPI DISTRIBUTION: 2 BARS

MINIQMC (proxy app QMCPACK) 16 threads running on SKL

Hottest loop

2 buckets visible, in fact

5 have been detected

19

CPI DISTRIBUTION: MULTIPLE BARS

MINIQMC (proxy app QMCPACK) 16 threads running on SKL

Second hottest loop

20

GENERAL ORGANIZATION

➢ First Run: identify loop of interest

• INPUT: whole program

• OUTPUT: a few loop identifiers

• By default, same loop identifiers for all threads

➢ Second Run: identify buckets

• INPUT: A few loop identifiers

• OUTPUT: for each loop, a few buckets and for each bucket, a
few instance numbers

• Buckets (and instances within a bucket) are generated
independently for each thread

➢ Third Run: generate performance numbers using DECAN

• Measurements are performed per thread and per bucket

• For each loop and bucket in a thread, a typical representative will
be the median

21

Buckets / Instances

Instances in red are those that will be monitored by tracing

Thread 1 Thread 2 Thread 3

Loop Bucket 2 Bucket 2 Bucket 2

Instances 8, 12, 15,

35, 36, …

7, 12, 13,

16, 17, …

1,5, 8, 9,

…

Median 35 17

Bucket 3 Bucket 3

1, 3, 5, 6,

13, 14, 18

4, 5, 6, …

Median 14

22

MAQAO DECAN: Decremental Analysis

➢ Goal: modify the application to

• Identify cause of bottlenecks

• Estimate associated performance impact

➢ Differential analysis:

• Targets innermost loops

• Transforms loops

• Compare performance of original and transformed copy

➢ Transformations

• Remove or modify groups of instructions

• Targets memory accesses or computation

• Modified loops provide wrong results but that’s OK because we
are only interested in performance. All of the modified loops are
run in a protected sand box environment.

23

MAQAO DECAN Transformations

Typical transformations/variants:

➢ FP: only FP arithmetic instructions are preserved

▪ => loads and stores are removed

➢ LS: only loads and stores are preserved

▪ => compute instructions are removed

➢ FES: only control flow instructions are preserved

▪ => compute instructions are removed

Comparing T(FP) (Time spent in FP variant) and T(LS) (Time spent in LS variant)

allows us to quantify how much a loop is CPU bound versus data access bound

➢ DL1: memory references replaced with constant memory address

▪ => for loops, data now accessed from L1: precise impact of perfect

blocking

MAQAO Performance Analysis and

Optimization Tool

24

MAQAO DECAN Example

FP LS

Ref

25

STABILITY EVALUATION + ACROSS THREADS

For the 31 timing measurements performed within a bucket, Stability (STA) is

defined as:

STA = (Median Time – Minimum Time) / Minimum Time

➢ Low values for STA means that there is little variation between instances

➢ On the contrary, large values for STA means large variations across instances

For each bucket/loop/thread, the median value within a bucket is used as a

representative, then minimum, median and maximum can be computed over

threads and STA across threads can be computed

Alternatively, we can bundle together for a given loop and a given bucket all of the

measurements and again, minimum, median, maximum can be computed and

another STA across threads is computed.

26

STABILITY EXAMPLE

Hottest MINIQMC loop 16 threads run on SKLs

27

CYCLES PER ITERATION ACROSS THREADS

28

CPI ACROSS THREADS

29

CYCLES PER ITERATION ACROSS THREADS (1)

Min (Thread) means each thread is represented by its median across

instances and Min is across these threads representatives

Min (Instances) means all of the measurements for threads and instances

are merged together and Min is computed on that list

30

CYCLES PER ITERATION ACROSS THREADS (1)

31

CONCLUSION AND FUTURE DIRECTIONS

➢ Three important issues have been presented: unstabilities between
runs, measurement quality, and performance variability

➢ We have demonstrated how MAQAO/OV tackles these 3 issues in a
single environment and provides very useful insights;

FUTURE DIRECTIONS

➢ Perform more advanced “statistics” on the data gathered

➢ For performance variability, MAQAO techniques are focussing on
loops and they should be extended to parallel OpenMP regions and
functions

➢ Define anomaly/unstability categories

➢ Automate anomaly/unstabilities detections

➢ Build a database of anomalies/unstability issues, including causes.

➢ Extend to multi-nodes

32

More on MAQAO

➢ MAQAO website: www.maqao.org

• Documentation: www.maqao.org/documentation.html

▪ Tutorials for ONE View, LProf and CQA

▪ Lua API documentation

• Latest release: http://www.maqao.org/downloads.html

▪ Binary releases (2-3 per year)

▪ Core sources

• Publications around MAQAO:
http://www.maqao.org/publications.html

http://www.maqao.org/
http://www.maqao.org/documentation.html
http://www.maqao.org/downloads.html
http://www.maqao.org/publications.html

33

BACKUP SLIDES

34

CPI DISTRIBUTION: MULTIPLE BARS

COMD 1 threads running on SKL

35

ISOBINARY: STABILITY RUNS (1)

Same code is run a large number of times to study measurement stability. Standard

statistics (deciles) are computed. An extra xlsx file is produced.

KBL 4 cores. Lulesh2.0

36

ISOBINARY: STABILITY RUNS (2)

Same code is run a large number of times to study measurement stability.

Going at the function level allows to quickly identify delinquent functions

Min, max, avg, med are computed over the 100 runs.

