~

Pacific Northwest
NATIONAL LABORATORY

MemGaze: Rapid and Effective
Load-Level Memory Trace Analysis

OzGUR KiLic, NATHAN TALLENT, YASODHA SURIYAKUMAR (PNNL & PORTLAND STATE UNIVERSITY)
- CHENHAO XIE, ANDRES MARQUEZ, STEPHANE ERANIAN (GOOGLE)

>

~="Scalable Tools Workshop 2023

PR

June 20, 2023

Mem@Gaze: low-overhead, high-resolution memory trace analysis\i;/
PNNL

O. Kilic et al. “MemGaze: Rapid and effective load-level memory and data analysis” CLUSTER ’22

" MemGaze: low-overhead, high-resolution, access sequences

* Uses Processor Tracing to collect sampled, compressed memory address traces
o Supported on x86 and ARM
" Focus: x86 ptwrite

[Optional: Code hotspot (PT guards)]
h

o Emerging x86 support 1.(Instrume?t 2. Lightweight /3. Memory & data analysis:\
: - - twrite memory * Data reuse v. movement
= Server: from Sapphire Rapids P -
PP P tracing e Reuse locations v. distances
* Multi-resolution analysis for Siiieieeclaiieaulang

o accesses vs. memory locations
o reuse (distance, rate, volume) vs. access patterns

o spatio-temporal correlations for time vs. location

e Both trace size and trace resolution are controllable :
Time overhead, good

implementation:
10-35%

Space savings: Accuracy:

1% of full trace Within 25% for sequences;
5% for hotspots

Highlights of Processor Tracing -
TRZANNL

= Control flow packets

= Per-core state/buffer

= Write arbitrary packet (64-bits)

= Mask instructions/packets on/off in hardware
* Enables sampling

= New: Cycle-Accurate Mode
* Cycle accurate timing

= New: Power events

e P-states and C-states

Binary instrumentation and Trace compression .

®" Ensure all instrumentation can be masked by hardware ptwrite s1

ptwrite s ptwrite s2

* single inline instruction loadd € [s]+0 ||load d € [s1] + k [s2] + O

* no change of CPU state (e.g., no spilling)
= Static analysis to classify loads

for (i=0;i<N;i+=2) trace
e (lassification: ~ (// alidx[i]] class annotation
: - 9| loadN Constant {} < no ptwrite; no annotation
o constant: e.g., stack frame, static data 2! oad a Constant {}7 o ha
o strided: affine » | load idx[i] Strided {strided, 2} " Proxy for implied
o)

, , . load alidxIi : Constant loads
o irregular: not strided or constant oad alidx[ill Irregular {irregular}

* Benefit 1: Compression
o Indirectly capture Constant loads (often uninteresting) with ptwrite proxy
= Average of 1.2x (O3) and 2x (O0) space savings
o For correctness, ensure basic block has at one ptwrite proxy
* Benefit 2: Rapid trace analysis

o Load classes = automatic access patterns, reduces time and overhead of subsequent analysis

Sampled memory traces with Processor Tracing

TSZANNL
" Processor Tracing cannot collect exhaustive traces
* Unpredictable data drops when buffers fill (e.g., kernel to user)
 Unmanageably large, O(GB/s) .
S o ; Time—>
= Sampled trace: sequence o R never
2 R, Some
w seen & z unseen accesses | interval R;ELEE ,{ | 3 |
l \
+ Control buffersizeand agdress > v......0 ...B...q...a... ...[3...
period between sampley' Jccess S W Z(unobserved) """"" W
= Question: Blind spots? 'sample 1 'sample 2

 R1 frequently observed

e R2 never observed aggregate samples 2 ' Code windows

* R3 sometimes observed ‘
. . Trace windows {i :i >
= Reduce error with sample aggregation 86((\9\@5 Time>
* Code windows aggregate samples > _ L Z S
* Source code attribution of instrumented code /\w/\/\ ' ' t

f g h g f «— code (function)

Analyzing memory operations over time
PNNL

= Top-down analysis with tree structure aggregate samples

* root: entire execution Time=> Na\“ee m e
. e
* interior: decreasing time intervals ‘.\«\e\“‘/\ : iij
* leaves: samples . A L ~
: : : : \W\ “
" Guidance with data locality metrics <8 2 F N
L Ui w W i
" Code structure within sample SN N
f g h g f «— code (function)

e support line mapping for PT instrumentation

' DarkNet (CNN) Inference (gemm): Data locality over time, hot access intervals

Access AlexNet ResNet152
Itoac A footprint rate pi reuse distance

* AlexNet: AF changes with layer (conv., fully,
pooling) vs. ResNet's consistency

0 guep

1 Time

* ResNet: AF =decreases: matrix dims change
(N, decreases; K, small increase)

* D =increases time: matrix dim N

N O T W N

decreases with higher level CNN filters

Analyzing memory locations over time

%L

: : Refined hot i i
= Top-down analysis with tree structure i /m / refined ot Region metrics & code
e root: all memory locations & region
| foad h , , = A1|20%| 9.0 |f, 8dx
eaves: refined, hot contiguous regions E A2[25%| 2.1[a,b | o oo
= Guidance with data locality metrics 2 A3|11%|5.0]|... hot
* Spatio-temporal analysis % [\ g [-+{B1 B1]10% 0.5|... | reslon
. . . . S Accessesto Ic1| 79| 7.9]..
" Associate region with code and object = A2 over time | 1~ T
O Cl o] .
S| 1c
<:cz N
LA e AAA, L AA, LAY
‘ Darknet: Spatio-temporal reuse of hot memory (64 B) Region zoom—> Time—> (Memory accesses)
Reuse
Object Model |Reuse (D) |# blocks| A|A / block

RS2 cemm matrices = hottest data
15.6

20.4 Reuse distance depends on
1.9 data & neural network

gemm’s A,B,C| AlexNet
gemm’'s B | ResNet152

hot region in | AlexNet
im2_col ResNet152

66048
38400
8192 167K
3328

Time overhead for tracing overhead correlates to ratio \?/
PNNL

good of ptwrite to non-ptwrite
implementation

= Qverhead proportional to ptwrites

section
= MemGaze, make graph
80% /= MemGaze, modularity
= MemGaze, total
- ptwrite : non-ptwrite, total
60%{ = MemGaze-opt, modularity

* depends on code generation, application/phase

= MemGaze: 5-7%, 10-95%
* suboptimal implementation (current)

ead/Ratio, miniVite

* PT runs continuously; retains data during samples <

U 20%-
>

= MemGaze-opt: 7x = <10%, 80% = 35% °

* PT enabled only during sample section

= MemGaze, make graph

0%-

00-v3

* user space implementation (proof-of-concept) _ #% - Nemcase tora] i
<
= Times for instrumentation & 2 60% i I I I

.. 0

post-mortem analysis in paper £ 40% [- [=
>

e suboptimal implementations © oo .' I I .' .'

* reasonable times b/c of reduced trace size -
° cc-00 cc-03 cc-sv-00 cc-sv-03 pr-O0 pr-O3 pr-spmv-O0pr-spmv-03
Benchmark

For a good implementation (PT only during samples),

overhead is 10-35% on memory intensive regions Early eval Wﬂ_m

(Atom) AlexNet/ResNet 5x / 7x 10% / 2%

Space reduction for traces

" Full trace — not exhaustive due to drops!
* Rec: recorded, with throttling and drops
e All: adjusted with drop information
e All*: full size (includes ‘Constant’ loads)

" MemGaze trace: =1% of full (All* vs All)

 sampled and compressed

"= Trace compression saves...
* High compiler opt (O3):

* No compiler opt (0OO0):

MemGaze trace is =1% of full

1.2x%
2X

Benchmark

_Full (GB) | |

Rec

All

all pbench-O0 (1x)
all yubench-O3 (1x)
all pbench-O3
miniVite-O0-v1
miniVite-O0-v2
miniVite-O0-v3
miniVite-O3-v1
miniVite-O3-v2
miniVite-O3-v3
GAP-cc-O0
GAP-cc-0O3
GAP-cc-sv-O0
GAP-cc-sv-0O3
GAP-pr-O0
GAP-pr-O3
GAP-pr-spmv-0O0
GAP-pr-spmv-0O3
Darknet-AlexNet
Darknet-ResNet

1.9
1.9
112
7
71
79
19
22
13
2.3
4.9
4.4
6.7
5.1
5.4
6.3
6.9
4.6
29

1.9
1.9
112

41
43
23
3.4
7.9
6.4
10.8
7.5
7.9
8.9
10.1
11.2
09

3.5

MemGaze

(MB)

Rec

3.3
1.1
0.8
2.1
2.4
2.1
1.6
1.4
2.6
15.4
0.6
8.6
0.5
7.4
0.7
6.1
0.6
1.6
2.6

11

Validation of data locality metrics

PNNL

" Compare against full traces for microbenchmarks and applications

* pbench: no drops by inserting OS sleep after each load

e apps: 10x more samples (full not feasible due to space)

= Trace and Code windows

For sampled, compressed trace (=1% of full)...

e Trace: mean absolute % error (MAPE) for histograms of trace windows: 1-25%

 Code: % error: <5% trace windows: 1-25% MAPE (varying dynamic sequence lengths)

25%
w= MAPE FP

mm MAPE StridedFP ¥
mm MAPE IrreqularFP | \

20%

~xam Yo0error FP
sam %error StridedFP
“wmm %error IrreqularFP

5%_ 7777777777 - u j 777777777777777 f = @000 —
D DN s 53 53 5
0%-

| |
strl str8 irr
| ubench: vary access, data reuse, sparsity, likelihood

irr-nalft str/irr irr|strirr

mv-v1 mv-v2

mv-v3
applications

gap-cc gap-pr

12

Case studies (Details in paper)

PNNL

Graph clustering (Louvain Community Detection, miniVite): vary data structures

e Vary hash table implementations, “open” (array + lists) vs. “closed” (array)

* Vary compiler optimization levels

Deep N. Net Inference (DarkNet): vary models

* AlexNet vs. ResNet
Graph analytics (GAP): vary algorithms
* PageRank: Gauss-Seidel vs. Jacobi-style

 Connected Component:
Afforest vs. Shiloach-Vishkin

Observations:

: : : attern
* Need time-based & location-based analysis

* Need complementary metrics and views

~ All use OpenMP threading

Several analyses w.r.t. time and location
Symbol Analysis
A

Accesses (memory)

D Spatio-temporal block reuse distance
F Footprint
F., Fi., |Footprint with strided/irregular access
Fero., Firpo, |Fraction of strided/irregular footprint
A.nstw |Fraction of accesses to ‘constant’ data
AF Footprint growth rate; footprint per access

AFg

% AI:irr%

Fraction of strided/irregular footprint growth

13

Graph Clustering (miniVite): Vary hash table implementations

(V1: C++ map \
~ (unordered)

(V_2: hopscotch |
default size

\, V.

(V_3: hopscotch\
‘right’ size

(vertex degree)

Sparse structures = smaller footprint, more irregular

Dense structures =2 larger footprint, more regular, but...

12@
2: 9>Q)~>Q)
4: @

- D>G

7

Closed

Open (C++ map) | (Hopscotch)

gl

N

R0 EREEE

' Data locality of hot function accesses

Function Variant F| AF|Fy9 A

. buildMap vl 2.3G| 0.156| 66.4| 291K
Run times | (make map)| v2 2.1G| 0.151| 66.9| 273K
vll 8.60 s v3 2.1G| 0.160| 66.8| 270K
map.insert V2 2.4Gf 0.003 §93.7§ 318K

v3| 3.88s v3 | 0.5G10.009 fo2.8
getMax vl 0.4G|0.150 |f 0.544.7K

(use map) V2 1.3G | 0.040 |}98.4} 182K

v3 1.5G [0.040 |f97.8] 194K

' Spatio-temporal reuse, hot memory (64 B block)

PNNL

better
pattern

hopscotch
must
manage
size!

Location
analysis
clearer

than time

Object Variant
map X;
(hash table) 3
remote edges| v1
of local v2
vertices v3
other objs in vl
buildMap V2
(from caller) v3

+# blocks A
768 | 55K
768 | 119K
768 | 85K
4864 | 24K
4864 | 19K
4864 | 19K
104K | 19235
101K | 21362
110K | 22306

14

GAP PageRank and Connect Components (CC): Vary algorithms \?/

PNNL
|Spatio-tempora| reuse of hot memory (64 B block) [Distribution of spatio-temporal metrics

Accesses
fewer, smaller dark
bands = better
- TS

Object | Algorithm RSN GTAVENT 4| A /block [Time
1.13 152 64K 0.76
2.41 132| 82K 1.14
5.21 154 581K
0.83 36 | 476K

CC

0-score pr
0-score | pr-spmv
cc cc

cc CC-SV

CC-SV

Access frequency

For PageRank, spatio-temporal shows difference

* pr (optimized) vs. pr-spmv] 100 10 102 10° 10* 10°
pr updates o-score ‘now’ vs. next iteration

* Reuse and AF (not shown) are better

* Accesses are better = fewer iterations

CC

similar behavior

(unimportant in reality)

Reuse (D)
CC-SV

For CC, averages are misleading =2 heatmaps

* cc (optimized) vs. cc-sv S
cC = more accesses; can improve locality

* Metrics (D, AF, Fig) for cc are worse.. Need many angles & many resolutions!

Conclusions

PNNL
Processor Tracing effective for low-overhead, high-resolution memory analysis
e accesses (operations) vs. memory locations
¢® dccesses Vs. spatio-temporal reuse

* reuse (distance, rate, volume) vs. access patterns

Sampled traces are 1% of full ones > MB vs. GB-TB
With a straightforward optimization, time overhead is 10-35% vs. 100x or more
* PT generalizes much performance and state telemetry (without interrupts)

Analyses explain effects of...
e different data structures, algorithms, and data sets

» different access patterns (strided, irregular), that both have ‘good’ spatio-temporal locality

Future work: hardware/software co-design, automated diagnostics, ...

github.com/pnnl/memgaze Opportunities: Job, intern, and collaboration

18

Scientific exploration is increasingly distributed & data-intensive

=L

= Domain science uses workflows: Analytics for Automated ~ Prescriptive
* Loose composition of different apps/tasks Discovery Experimentation . Forecasting

o motivated by productivity

Augmented Analysis

* Potentially different programming models

. S Integrated o
Data sources are distributed Eperimant °; H
* Intensive use of memory, storage, networks 3 Trial-and-Error 9
] .) N Experiment NS 0
o storage the means for task composition
8 P 7 Collect Many o— E o
Collect Few Data Streams & 3
Data Streams &

Data Processing HPC: Physics Model
v | v

\‘Q : ‘ \—’| Lo — Ch°%§7.£§:f”res ML-Based &
| Feature Detection .

o\ =
Cloud: Analytics Laptop: [lterative
GPUs: Al/ML Hypotheses Model Extraction

5 e

Compute [J@) Storage Memory

Ny

[Sensors]

Flow: left>right Data_
—-— Flow: volume,

\

Data Flow Lifecycles: Runtime data & flow lifecycles

rate, ...

Data Task

a

Sankey diagrams:
represent flow
Vertices: Data & Task
Flow: Edges

Vertices and edges
associated with many
dynamic properties
(affects rendering)

PNNL

DeepDriveMD

e

20

Data Flow Lifecycles: Runtime data & flow lifecycles \?/
PNNL

‘Consumer: data—2>task

DeepDriveMD

Flow: left2>right

Data Task

* Entities & Patterns
(many more)

* Opportunity
analysis... (not
shown)

'Data subset

D

' Data reuse

21

