

Levels of Detail in Performance Analysis: a RISC-V vector codesign case

Prof. Jesús Labarta

BSC & UPC

Scalable Tools Workshop

Granlibakken, June 19th 2023

• Scalability: not about size, about dynamic range !

• "Universal" principles: "Similar" at all scales

• BSC tools focus

• BSC tools focus

Traditionally

• BSC tools focus

Useful ? Possibilities?

... on RISC-V Vector processor ?

The EPI RISCV Vector project

LOD for "co-design"

Granularities

Extrae traces

Prof. Jesús Labarta

BSC & UPC

Scalable Tools Workshop

Extrae traces

HPL: N=4096

- User events
 - Code region events
 - User events M, N, K
 - Derive MFLOPS
 - Sampling or not
 - HW counters
 - Typical: I, cyc, L1, TLB
 - Other: VEC stalls & utilization

Less OS ? 50 MHz emulator standard Linux interrupts

% of peak @ dgemm @ Linpack?

Extrae HWC metrics

With sampling

Extrae traces

HPL: N=4096

Extrae HWC metrics

With sampling

No sampling

Sampling & folding

Prof. Jesús Labarta

BSC & UPC

Scalable Tools Workshop

Coarse grain sampling \rightarrow fine grain detail

- ESiWace Dwarf
 - Climate code miniapp (IFS)
 - Iterative
 - Very flat profile
 - Fine granularity
- Trace with sampling
 - ~70 ms sampled granularity
 - Actual program granularity? Can be identified?

Coarse grain sampling \rightarrow fine grain detail

 Postprocess trace (folding) to get finer grain details

Harald Servat et al. "Detailed performance analysis using coarse grain sampling" PROPER@EUROPAR, 2009

Harald Servat et al. "Unveiling Internal Evolution of Parallel Application Computation Phases" ICPP 2011

Vehave emulation and MUSA simulation

Prof. Jesús Labarta

BSC & UPC

Scalable Tools Workshop

Granlibakken, June 19th 2023

Vehave traces

• EsiWace climate code dwarfs

Architectural simulation

- Impact of ...
 - Instruction latencies, ROB, Cache sizes, Memory latency, MAXVL, ...
- Global metrics & detail
 - When are instructions issued, completed, graduated
 - Individual hits & misses

• Detailed analysis & insight

RVV Software emulation

Prof. Jesús Labarta

BSC & UPC

ILA

Scalable Tools Workshop

Centro Nacional de Supercomputación

Barcelona

Supercomputing Center

Centro Nacional de Supercomputación

Zoom ila 17,653 ns X ila 17,653 ns Load not issued till very late still in time to overlap, but .. men_0 men_1 mem_2 17,653 ns

- Impact of memory latency
 - + 0 cycles
 - +100 cycles
 - +200 cycles
 - +300 cycles

• Impact of memory latency (+300 cycles)

X ×	issued instruction @ xhpl.DB.N2400.0BLOCK.300L.ila_ext.prv	\sim \wedge \times
ila		
20,158 ns		20,831 ns
X ×	Top of ROB @ xhpl.DB.N2400.0BLOCK.300L.ila_ex_prv	\sim $^{\times}$ \times
ila		
20,158 ns		20,831 ns
🔣 🖈 Memory O	peration (extended data model) @ xhpl.DB.N2400.0BLOCK.300L.ila_ex	ĸt.prv ∨ ^ ×
mem_0 mem_1		
20,158 ns		20,831 ns
X ×	instr_in_flight @ xhpl.DB.N2400.0BLOCK.300L.ila_ext.prv	\sim \sim \times
ila	~~~~~~~~~	
20.158 ps		20.831 ps
N	Loss or store stroke @ ybol DP N2400 0PLOCK 2001 ils out pru	
	Load of store strobe @ xhpi.bb.wz400.0BLOCK.SOULila_ext.prv	× ~ ^
mem_1 mem_2		
20,158 ns		20,831 ns
<u>x</u> ×	LX references @ xhpl.DB.N2400.0BLOCK.300L.ila_ext.prv	\vee \wedge \times
ila		
20,158 ns		20,831 ns
X ×	miss_any_hn @ xhpl.DB.N2400.0BLOCK.300L.ila_ext.prv	\sim \sim \times
ila		
20,158 ns		20,831 ns
X ×	hit_any_hn @ xhpl.DB.N2400.0BLOCK.300L.ila_ext.prv	\sim \sim \times
ila		
20,158 ns		20,831 ns

A productivity example

Prof. Jesús Labarta

BSC & UPC

Scalable Tools Workshop

Productivity

- ISO RTM code
- Half an hour with the compiler expert ...
 - 4.1x faster than sequential \rightarrow 15x !!!

Productivity

- Good ?
 - Still only 15% utilization of core data channel ⊗
- Codesign suggestions for
 - Compiler / App
 - Loop interchange/split improvement to reduce memory accesses (store !), reuse register and lookahead (store stalls)
 - Reorder loads to overlap memory and cache access
 - 3x unroll to increase register usage
 - Architecture
 - More concurrent loads
 - Increase cache interleave factor
 - ... Architects often sensitive

Conclusion

Prof. Jesús Labarta

BSC & UPC

Scalable Tools Workshop

Conclusion

- Hierarchy of tools for Levels of Detail in Performance Analysis
 - Data gathering
 - Extrae, PAPI, ...
 - ILA2PRV
 - Visualization \rightarrow Paraver
 - Analytics
- Some analyses for RVV ...
- ... to discuss with RTL, Compiler, Application implementors
- An approach that I believe could also be useful to improve productivity in other co-design efforts

END

Prof. Jesús Labarta

BSC & UPC