
Pipit: Enabling Programmatic Analysis
of Parallel Execution Traces

Abhinav Bhatele, Rakrish Dhakal, Alexander Movsesyan, Aditya Ranjan,
Jordan Marry, Onur Cankur

Department of Computer Science, University of Maryland

Abhinav Bhatele

Primarily developed by UMDCS undergrads

2

Rakrish Dhakal Jordan Marry Alex Movsesyan Aditya Ranjan

Abhinav Bhatele

The name pipit … flicker fusion rate

• Frequency at which intermittent light
stimulus appears to be completely
steady

• Varies across species

• Much higher in birds of prey and
passerines compared to humans (~129–
137 Hz. vs. 60–75 Hz.)

3

Nilgiri Pipit

https://www.sciencedaily.com/releases/2016/03/160318144548.htm

Abhinav Bhatele

The name pipit … flicker fusion rate

• Frequency at which intermittent light
stimulus appears to be completely
steady

• Varies across species

• Much higher in birds of prey and
passerines compared to humans (~129–
137 Hz. vs. 60–75 Hz.)

3

Nilgiri Pipit

https://www.sciencedaily.com/releases/2016/03/160318144548.htm

Abhinav Bhatele

Certain things can only be done with traces

• Analyzing utilization over time

• Messaging dependencies, critical paths

• Studying overlap of communication and computation

• Other time series analysis: repeating patterns, …

4

Abhinav Bhatele

Limitations of current tools

• Each tool supports specific file formats

• Scripting and visualization are typically separate

• Easy comparisons of multiple executions are missing

5

Abhinav Bhatele

Goal: Scripting + visualization for traces

• Programmatic analysis of parallel execution traces

• Support a variety of file formats

• Provide basic operations to ingest/explore/reduce data

• Provide advanced operations to find scalability issues

• Support multi-run analysis

6

Abhinav Bhatele

Pipit was hatched

• A Python-based library that uses pandas

• Load traces into a pandas dataframe

• Set of operators to calculate basic things such as caller-callee relationships, inclusive
metrics, exclusive metrics, …

• Other operators to analyze overall performance, communication performance,

• Filter the trace to a more manageable size

7

Abhinav Bhatele

Data structures in pipit

8

Abhinav Bhatele

Data structures in pipit

• (Events, timestamps) X
(processes, threads) X
(performance metrics)

• Store as dataframe

• Compute call graph
aggregated over time and
processes

8

Abhinav Bhatele

Data structures in pipit

• (Events, timestamps) X
(processes, threads) X
(performance metrics)

• Store as dataframe

• Compute call graph
aggregated over time and
processes

8

Abhinav Bhatele

Reading in a trace dataset

• Pipit is available on GitHub:

• We support several file formats already: OTF2, HPCToolkit (new format), Projections,
Nsight (basic), CSV, …

9

http://github.com/hpcgroup/pipit

Abhinav Bhatele

Reading in a trace dataset

• Pipit is available on GitHub:

• We support several file formats already: OTF2, HPCToolkit (new format), Projections,
Nsight (basic), CSV, …

9

http://github.com/hpcgroup/pipit

Abhinav Bhatele

Reading in a trace dataset

• Pipit is available on GitHub:

• We support several file formats already: OTF2, HPCToolkit (new format), Projections,
Nsight (basic), CSV, …

9

http://github.com/hpcgroup/pipit

Contributions Welcome!

Abhinav Bhatele

Start exploring …

10

Abhinav Bhatele

Start exploring …

10

Abhinav Bhatele

Time profile / utilization

11

Abhinav Bhatele

Time profile / utilization

11

Abhinav Bhatele

Load imbalance

12

Abhinav Bhatele

Communication analysis

13

Abhinav Bhatele

Communication analysis

13

Abhinav Bhatele

Communication analysis

13

Abhinav Bhatele

Communication analysis

13

Abhinav Bhatele

Communication analysis

13

Abhinav Bhatele

Data reduction / filtering

14

Abhinav Bhatele

Data reduction / filtering

14

 idle_time()
 outlier_detection()
 pattern_detection()

Abhinav Bhatele

Data reduction / filtering

14

 idle_time()
 outlier_detection()
 pattern_detection()

Abhinav Bhatele

Pattern detection

15

Abhinav Bhatele

Pattern detection

15

Abhinav Bhatele

Pattern detection

15

Abhinav Bhatele

Multi-run analysis

16

Abhinav Bhatele

Multi-run analysis

16

Abhinav Bhatele

Scalability

• Very much a work in progress

17

Pipit: Enabling programmatic analysis of parallel execution traces Conference’17, July 2017, Washington, DC, USA

Figure 4: Performance of the OTF2 Reader and comm_matrix function for various traces of AMG and Laghos (left). We compare
the runtimes with the number of rows in the corresponding events DataFrame. On the right – Breakdown of time spent in
various functions called within calc_exc_metrics when analyzing Tortuga traces.

plot_message_size_histogram displays the output of the mes-
sage_size_histogram operation as a bar graph, where the heights
of the bars represent the frequency of messages for each size bin.

Figure 5: Communication summary view of a Kripke execu-
tion on 32 processes. We observe that each process can be
placed in one of three sets by its communication volume.

plot_comm_summary visualizes the output of the comm_summary
operation as a bar graph, where the heights of the bars represent the
total message volume sent and received by each process. Figure 5
shows this view for a Kripke execution on 32 processes.

plot_comm_over_time displays the output of the comm_over_time
operation as a bar graph, where the heights of the bars represent
the total message volume sent over time.

6 PERFORMANCE OF PIPIT OPERATIONS
In this section, we present the performance of a few hand-picked
Pipit operations to understand their scalability.We have parallelized
the reading of input traces in certain �le formats using Pythonmulti-
processing. Figure 6 shows the time spent by the Pipit OTF2 reader
in reading traces of two di�erent applications, AMG (128 processes)
and Laghos (256 processes). All the experiments in this section were
performed on a single node of an HPC cluster with a dual 64-core
AMD EPYC 7763 processor (2.45 GHz base, 3.5 GHz turbo). The

OTF2 reader performance scales well with the number of cores,
and we get signi�cant speedups from using 64 cores. We plan to
gradually parallelize most readers and operations in Pipit.

Figure 6: Strong scaling performance of the OTF2 Reader for
AMG 128 and Laghos 256 traces.

Next, we analyze the scalability of various Pipit operationsw.r.t. in-
creasing trace sizes. For each experiment, we average the times
over 3 trials. Figure 4 (left) shows the time spent in the OTF2 reader
and the comm_matrix function when reading AMG and Laghos
traces of di�erent sizes. We can see that there is a linear relationship
between the number of rows in the DataFrame and the runtime.

After a trace is read, most analysis work�ows begin with calcu-
lating inclusive and exclusive metrics for each function. Hence, we
measure the performance of the calc_exc_metrics function and its
breakdown into three other functions it invokes: _match_events,
calc_inc_metrics, and _match_caller_callee. Figure 4 (right) shows
that _match_events and _match_caller_callee take a bulk of the
runtime as they iterate over the entire trace. Furthermore, the pro-
portions of time taken by each function remains relatively constant
even as the size of the trace increases, showing that these API
functions can be used in an e�cient and scalable manner.

Abhinav Bhatele

Scalability

• Very much a work in progress

17

Pipit: Enabling programmatic analysis of parallel execution traces Conference’17, July 2017, Washington, DC, USA

Figure 4: Performance of the OTF2 Reader and comm_matrix function for various traces of AMG and Laghos (left). We compare
the runtimes with the number of rows in the corresponding events DataFrame. On the right – Breakdown of time spent in
various functions called within calc_exc_metrics when analyzing Tortuga traces.

plot_message_size_histogram displays the output of the mes-
sage_size_histogram operation as a bar graph, where the heights
of the bars represent the frequency of messages for each size bin.

Figure 5: Communication summary view of a Kripke execu-
tion on 32 processes. We observe that each process can be
placed in one of three sets by its communication volume.

plot_comm_summary visualizes the output of the comm_summary
operation as a bar graph, where the heights of the bars represent the
total message volume sent and received by each process. Figure 5
shows this view for a Kripke execution on 32 processes.

plot_comm_over_time displays the output of the comm_over_time
operation as a bar graph, where the heights of the bars represent
the total message volume sent over time.

6 PERFORMANCE OF PIPIT OPERATIONS
In this section, we present the performance of a few hand-picked
Pipit operations to understand their scalability.We have parallelized
the reading of input traces in certain �le formats using Pythonmulti-
processing. Figure 6 shows the time spent by the Pipit OTF2 reader
in reading traces of two di�erent applications, AMG (128 processes)
and Laghos (256 processes). All the experiments in this section were
performed on a single node of an HPC cluster with a dual 64-core
AMD EPYC 7763 processor (2.45 GHz base, 3.5 GHz turbo). The

OTF2 reader performance scales well with the number of cores,
and we get signi�cant speedups from using 64 cores. We plan to
gradually parallelize most readers and operations in Pipit.

Figure 6: Strong scaling performance of the OTF2 Reader for
AMG 128 and Laghos 256 traces.

Next, we analyze the scalability of various Pipit operationsw.r.t. in-
creasing trace sizes. For each experiment, we average the times
over 3 trials. Figure 4 (left) shows the time spent in the OTF2 reader
and the comm_matrix function when reading AMG and Laghos
traces of di�erent sizes. We can see that there is a linear relationship
between the number of rows in the DataFrame and the runtime.

After a trace is read, most analysis work�ows begin with calcu-
lating inclusive and exclusive metrics for each function. Hence, we
measure the performance of the calc_exc_metrics function and its
breakdown into three other functions it invokes: _match_events,
calc_inc_metrics, and _match_caller_callee. Figure 4 (right) shows
that _match_events and _match_caller_callee take a bulk of the
runtime as they iterate over the entire trace. Furthermore, the pro-
portions of time taken by each function remains relatively constant
even as the size of the trace increases, showing that these API
functions can be used in an e�cient and scalable manner.

Abhinav Bhatele

Summary

• Pipit provides an API for programmatic analysis of parallel traces

• Scripting + visualization can simplify performance analysis and save effort, time, make
it more powerful …

• Future work:

• Scalability of the tool: parallel reading, parallel operations

• Scalability of the visualization

18

Code: http://github.com/hpcgroup/pipit

Paper preprint: https://arxiv.org/abs/2306.11177

http://github.com/hpcgroup/pipit
https://arxiv.org/abs/2306.11177

Abhinav Bhatele

Parallel Software and Systems Group

5218 Brendan Iribe Center (IRB) / College Park, MD 20742

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

