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Primarily developed by UMDCS undergrads
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The name pipit … flicker fusion rate

• Frequency at which intermittent light 
stimulus appears to be completely 
steady

• Varies across species

• Much higher in birds of prey and 
passerines compared to humans (~129–
137 Hz. vs. 60–75 Hz.)
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Nilgiri Pipit

https://www.sciencedaily.com/releases/2016/03/160318144548.htm
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Certain things can only be done with traces

• Analyzing utilization over time

• Messaging dependencies, critical paths

• Studying overlap of communication and computation

• Other time series analysis: repeating patterns, …
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Limitations of current tools

• Each tool supports specific file formats

• Scripting and visualization are typically separate

• Easy comparisons of multiple executions are missing
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Goal: Scripting + visualization for traces

• Programmatic analysis of parallel execution traces

• Support a variety of file formats

• Provide basic operations to ingest/explore/reduce data

• Provide advanced operations to find scalability issues

• Support multi-run analysis
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Pipit was hatched

• A Python-based library that uses pandas

• Load traces into a pandas dataframe

• Set of operators to calculate basic things such as caller-callee relationships, inclusive 
metrics, exclusive metrics, …

• Other operators to analyze overall performance, communication performance, 

• Filter the trace to a more manageable size
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Data structures in pipit
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Data structures in pipit

• (Events, timestamps) X 
(processes, threads) X 
(performance metrics)

• Store as dataframe

• Compute call graph 
aggregated over time and 
processes

8



Abhinav Bhatele

Data structures in pipit

• (Events, timestamps) X 
(processes, threads) X 
(performance metrics)

• Store as dataframe

• Compute call graph 
aggregated over time and 
processes

8



Abhinav Bhatele

Reading in a trace dataset

• Pipit is available on GitHub:

• We support several file formats already: OTF2, HPCToolkit (new format), Projections, 
Nsight (basic), CSV, …
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http://github.com/hpcgroup/pipit
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Start exploring …
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Time profile / utilization
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Load imbalance
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Communication analysis
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Data reduction / filtering
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Pattern detection
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Pattern detection
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Pattern detection
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Multi-run analysis
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Multi-run analysis
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Scalability

• Very much a work in progress
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Figure 4: Performance of the OTF2 Reader and comm_matrix function for various traces of AMG and Laghos (left). We compare
the runtimes with the number of rows in the corresponding events DataFrame. On the right – Breakdown of time spent in
various functions called within calc_exc_metrics when analyzing Tortuga traces.

plot_message_size_histogram displays the output of the mes-
sage_size_histogram operation as a bar graph, where the heights
of the bars represent the frequency of messages for each size bin.

Figure 5: Communication summary view of a Kripke execu-
tion on 32 processes. We observe that each process can be
placed in one of three sets by its communication volume.

plot_comm_summary visualizes the output of the comm_summary
operation as a bar graph, where the heights of the bars represent the
total message volume sent and received by each process. Figure 5
shows this view for a Kripke execution on 32 processes.

plot_comm_over_time displays the output of the comm_over_time
operation as a bar graph, where the heights of the bars represent
the total message volume sent over time.

6 PERFORMANCE OF PIPIT OPERATIONS
In this section, we present the performance of a few hand-picked
Pipit operations to understand their scalability.We have parallelized
the reading of input traces in certain �le formats using Pythonmulti-
processing. Figure 6 shows the time spent by the Pipit OTF2 reader
in reading traces of two di�erent applications, AMG (128 processes)
and Laghos (256 processes). All the experiments in this section were
performed on a single node of an HPC cluster with a dual 64-core
AMD EPYC 7763 processor (2.45 GHz base, 3.5 GHz turbo). The

OTF2 reader performance scales well with the number of cores,
and we get signi�cant speedups from using 64 cores. We plan to
gradually parallelize most readers and operations in Pipit.

Figure 6: Strong scaling performance of the OTF2 Reader for
AMG 128 and Laghos 256 traces.

Next, we analyze the scalability of various Pipit operationsw.r.t. in-
creasing trace sizes. For each experiment, we average the times
over 3 trials. Figure 4 (left) shows the time spent in the OTF2 reader
and the comm_matrix function when reading AMG and Laghos
traces of di�erent sizes. We can see that there is a linear relationship
between the number of rows in the DataFrame and the runtime.

After a trace is read, most analysis work�ows begin with calcu-
lating inclusive and exclusive metrics for each function. Hence, we
measure the performance of the calc_exc_metrics function and its
breakdown into three other functions it invokes: _match_events,
calc_inc_metrics, and _match_caller_callee. Figure 4 (right) shows
that _match_events and _match_caller_callee take a bulk of the
runtime as they iterate over the entire trace. Furthermore, the pro-
portions of time taken by each function remains relatively constant
even as the size of the trace increases, showing that these API
functions can be used in an e�cient and scalable manner.
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Summary

• Pipit provides an API for programmatic analysis of parallel traces

• Scripting + visualization can simplify performance analysis and save effort, time, make 
it more powerful …

• Future work:

• Scalability of the tool: parallel reading, parallel operations

• Scalability of the visualization
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Code: http://github.com/hpcgroup/pipit

Paper preprint: https://arxiv.org/abs/2306.11177

http://github.com/hpcgroup/pipit
https://arxiv.org/abs/2306.11177


Abhinav Bhatele


Parallel Software and Systems Group 


5218 Brendan Iribe Center (IRB) / College Park, MD 20742


phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu


