
ytopt: Autotuning Hybrid MPI/OpenMP
ECP Proxy Applications at Large Scales

Xingfu Wu
Argonne National Laboratory, The University of Chicago

P. Balaprakash, M. Kruse, J. Koo, B. Videau, P. Hovland, V. Taylor (Argonne)
B. Geltz, S. Jana (Intel)

M. Hall (University of Utah)

Scalable Tools Workshop 2022
June 20, 2022

2

Background and Motivations

§ As we enter the exascale computing era, efficiently utilizing power and optimizing
the performance of scientific applications under power and energy constraints
has become critical and challenging.

§ As the complexity of high performance computing (HPC) ecosystems continues
to rise, achieving optimal performance becomes a challenge.

§ The number of tunable parameters an HPC user can configure has increased
significantly, resulting in a dramatically increased parameter space.

§ Exhaustively evaluating all parameter combinations becomes very time-
consuming.

§ Solution: autotuning for automatic exploration of parameter space is desirable.

§ Autotuning is an approach that explores a search space of tunable parameter
configurations of an application efficiently executed on an HPC system. Typically,
one selects and evaluates a subset of the configurations on the target system
and/or uses analytical models to identify the best implementation or configuration
for performance or energy efficiency within a given computational budget.

Background and Motivations

§ Existing autotuning frameworks were for autotuning on a single or a few compute
nodes.

§ Current large-scale HPC systems such as Theta at ANL and Summit at ORNL
have complex system architectures and software stacks with many tunable
parameters that may affect the system performance and energy.

§ Application developers and users often rely on these systems with the default
configurations setup by the vendors to run their applications. How efficiently are
these applications executed?

§ How can we identify the best combination of these parameters for the best
system performance or the lowest system energy consumption?

§ Can we develop a low-overhead and scalable framework to autotune large-scale
applications for performance or energy efficiency on large-scale HPC production
systems such as Summit and Theta?

Our Previous Work

§ Autotuning framework ytopt was developed (X. Wu, et al., Autotuning PolyBench
Benchmarks with LLVM Clang/Polly loop optimization pragmas using Bayesian
optimization, Concurrency and Computation: Practice and Experience, vol. e6683,
https://doi.org/10.1002/cpe.6683, 2021)
– LLVM Clang/Polly loop optimization pragmas (loop tiling, loop interchange, loop

reversal, array packing) focus on a single core optimization
– Autotuned PolyBench Benchmarks on a single compute node
– Autotuned a deep learning application MNIST on a single node

§ Toward an End-to-End Autotuning Framework in HPC PowerStack (X. Wu, et al.,
Energy Efficient HPC State of Practice 2020, Kobe, Japan, Sep. 14, 2020)
– HPC PowerStack - a global consortium of laboratories, vendors, and universities -

has highlighted a design shift towards standardization of the HPC power
management software stack.

– This enables seamless integration of software solutions that enable management of
energy/power consumption of large scale HPC systems.

– This paper surveyed the high-level objectives of the existing layer-specific tuning
approaches, defined the tunable parameters, and proposed and discussed how to
autotune the combination

Our Approaches

§ We propose a low-overhead, scalable autotuning framework to autotune various
hybrid MPI/OpenMP applications at large scales.

§ We use the autotuning framework to autotune four hybrid MPI/OpenMP ECP
proxy applications, namely XSBench, AMG, SWFFT, and SW4lite, using
Bayesian optimization with a Random Forest surrogate model to effectively
search parameter spaces with up to 6 million different configurations.

§ We demonstrate the effectiveness of our autotuning framework to tune the
performance or energy consumption of these hybrid MPI/OpenMP applications
on up to 4,096 nodes with 262,144 cores.

§ The experimental results show that our proposed autotuning framework at large
scales has low overhead and good scalability on Summit and Theta.

§ Using the proposed autotuning framework to identify the best configurations, we
achieve up to 91.59% performance improvement and up to 21.2% energy saving
on up to 262,144 cores.

6

Methodology of the Autotuning Framework

§ We analyze an application code to identify the important tunable application
and system parameters (OpenMP environment variables) to define the
parameter space.

§ We denote the tunable parameters with marker symbols such as #P0, #P1,
#P2, ... , #Pm to generate another code with these symbols as a code mold
(tunable parameterized application code).

§ ytopt starts with the user-defined parameter space, the code mold, and user-
defined interface that specifies how to evaluate the code mold with a particular
parameter configuration.

7

Methodology of the Autotuning Framework

§ The search method within ytopt uses Bayesian optimization, where a
dynamically updated Random Forest surrogate model that learns the
relationship between the configurations and the performance metric, is used to
balance exploration and exploitation of the search space.

– In the exploration phase, the search evaluates parameter configurations that
improve the quality of the surrogate model,

– In the exploitation phase, the search evaluates parameter configurations
that are closer to the previously found high-performing parameter
configurations.

– The balance is achieved through the use of the lower confidence bound
(LCB) acquisition function that uses
• the surrogate models’ predicted values of the unevaluated parameter

configurations
• and the corresponding uncertainty values (standard deviation).

8

Proposed Autotuning Framework in Performance

9

Iterative Phase of the Proposed Framework

§ Step 1: Bayesian optimization selects a parameter configuration for evaluation.
§ Step 2: The code mold is configured with the selected configuration to generate

a new code.
§ Step 3: Based on the value of the number of threads in the configuration and

the number of nodes reserved, aprun/jsrun command line for the launch of the
application on the compute nodes is generated.

§ Step 4: The new code is compiled with other codes needed to generate an
executable.

§ Step 5: The generated aprun/jsrun command line is executed to evaluate the
application with the selected parameter configuration; the resulting application
runtime is sent back to the search and recorded in the performance database.

§ Steps 1–5 are repeated until the maximum number of code evaluations or the
wall-clock time is exhausted for the autotuning run.

10

Some Terms Defined

§ The term ytopt processing time includes
– the time spent in the parameter space search,
– building the surrogate model,
– processing the selected configuration to generate a new code and the

aprun/jsrun command line,
– compiling the new code,
– launching the application,
– and storing the configuration and performance in the performance database

(except the application runtime).
§ The term ytopt overhead to stand for the ytopt processing time minus the

application compiling time.

§ Compiling time (s) for each application on Theta and Summit

Motivation

– Existing autotuning primarily layer-specific
– Need to identify, quantify and explore

opportunities for cross-layer tuning

Approaches
– Surveyed existing co-tuning work
– Identified open challenges, hard problems

in co-tuning
– Provided a platform to drive collaboration

on developing solution

End-to-End Autotuning Framework in PowerStack

12

Global Extensible Open Power Manager (GEOPM)

GEOPM: https://geopm.github.io

13

GEOPM

§ It provides multiple interfaces to enable interoperability with external HPC
software components such as enabling job schedulers and resource managers
to drive job-aware system-wide power efficiency improvements.

§ It enables control and monitoring of hardware/software knobs across multiple
platforms and architectures such as leveraging multiple power and performance
knobs like Intel’s hardware power-limiting capability (RAPL) for achieved CPU
frequency

§ The GEOPM job launch script, geopmlaunch, queries and uses the OMP_NUM
_THREADS environment variable to choose affinity masks for each process.

§ The principal job of geopmlaunch to aprun is to set explicit per-process CPU
affinity masks that will optimize performance while enabling the GEOPM
controller thread to run on a core isolated from the cores used by the primary
application.

§ The geopmlaunch enables the GEOPM library to interpose on MPI using the
PMPI interface through the LD_PRELOAD mechanism for unmodified binaries.

14

Proposed Autotuning Framework in Energy

15

Methodology of the Proposed Energy Framework

§ Steps 1 and 2 are the same.

There are some differences in Steps 3, 4, and 5.
§ At Step 3, ytopt sets the OMP_NUM_THREADS environment variable and

generates the aprun command line for application launch.
§ For the compiling Step 4, the dynamic linking is required with the -dynamic flag.
§ At Step 5, ytopt uses the geopmlaunch to launch the aprun command line with

the options ”--geopm- ctl=pthread,” which launches the controller as an extra
pthread per node, and ”--geopm-report=gm.report,” which creates the summary
report file gm.report about performance, power, and energy for each node to
evaluate the application with the configuration. ytopt processes the summary
report file from GEOPM to record the average node energy in the performance
database.

§ Steps 1–5 are repeated until the maximum number of code evaluations or the
wall-clock time for the run.

Systems: Summit and Theta
System Name Cray XC40 Theta IBM Power9 Summit

Location Argonne	National	Lab Oak	Ridge	National	Lab

Architecture Intel KNL IBM	Power9	+	Nivida GPU

Number of nodes 4,392 4,408

CPU cores per node 64 42

Sockets per node 1 2	for	Power9;	2	for	GPU	sockets

CPU type and speed Xeon Phi KNL 7230 1.30GHz IBM	Power9		4GHz

GPUs per node None 6	Nividia Volta	GPUs

L1 cache per core D:32KB, I:32KB D:32KB, I:32KB

L2 cache per socket 32MB (two cores shared 1MB) 21MB	(two	cores	shared	512KB)

L3 cache per socket None 120MB	(shared)

Threads per core 4 4

Memory per node 16GB MCDRAM, 192GB DDR4 96GB	HBM2,	512GB	DDR4

Network Cray Aries Dragonfly dual-rail EDR InfiniBand

Power tools GEOPM, CapMC, RAPL Nvidia-smi,	NVML

TDP per socket 215W 190W/Power9;	300W/GPU

File System Lustre PFS (210GB/s) IBM	GPFS	(2.5TB/s)

Four ECP Proxy Application and Parameter Spaces

Three weak scaling applications: XSBench, SWFFT, and AMG
One strong scaling application: SW4lite

18

Case Study: Autotuning Performance on a Single Node

• On Theta, the baseline: 3.395s; Autotuning: 3.339s
• ytopt overhead: less than 70s

19

Case Study: Autotuning Performance on a Single Node

• On Summit, the baseline: 2.20s; Autotuning: 2.138s
• ytopt overhead: less than 24s

20

Case Study: Autotuning Performance at Large Scales

• Autotuning XSBench on 1024 and 4096 nodes on Theta
• ytopt search reaches the good region of the parameter space over time

21

Case Study: Autotuning Performance at Large Scales

• On Summit, ytopt search gradually reaches the good region of
the parameter space over time
• ytopt overhead: less than 111s

22

Case Study: Autotuning Performance at Large Scales

• On Summit, 12.69% performance improvement
• ytopt overhead: less than 50s

23

Case Study: Autotuning Performance at Large Scales

• On Theta, ytopt search reaches the good region of the parameter space over time
• ytopt overhead: less than 30s

24

Case Study: Autotuning Performance at Large Scales

• On Summit, 22.54% performance improvement
• ytopt overhead: less than 45s

25

Case Study: Autotuning Performance at Large Scales

• On Theta, just 6 evaluations for autotuning
• ytopt overhead: less than 34s

26

Case Study: Autotuning Performance at Large Scales

• On Theta, 91.59% performance improvement
• ytopt overhead: less than 46s

27

Case Study: Autotuning Performance at Large Scales

• On Summit, 30.78% performance improvement
• ytopt overhead: less than 46s

Summary for Autotuning Performance at Large Scales

§ Overall, the ytopt processing times for the four applications are impacted mainly
by the systems and application compiling times.

§ We find that the ytopt overhead on up to 4,096 nodes on both Theta and Summit
is less than 111 s. This shows that our autotuning framework has low overhead
and good scalability.

29

Case Study: Autotuning Energy at Large Scales

Energy saving:
• 8.58% for XSBench; 2.09% for SWFFT

30

Case Study: Autotuning Energy at Large Scales

Energy saving:
• 19.07% for AMG; 21.20% for SW4lite

Summary

§ We proposed the low-overhead, scalable autotuning frameworks to autotune four
hybrid MPI/OpenMP ECP proxy applications—XSBench, AMG, SWFFT, and
SW4lite— for energy efficiency at large scales.

§ We used Bayesian optimization with a Random Forest surrogate model to
effectively search the parameter spaces with up to 6 million different
configurations on Theta and Summit.

§ The experimental results showed that our autotuning framework had low
overhead and good scalability.

§ By using the autotuning framework to identify the best configuration, we achieved
up to 91.59% performance improvement and up to 21.2% energy savings on up
to 262,144 cores.

§ This autotuning framework is open source and is available from this link
https://github.com/ytopt-team/ytopt

Future Work

§ We plan to add transfer learning and online learning to the framework so that it
can transfer what it learns from the applications at a small scale in problem sizes
and system sizes to guide and/or predict the autotuning at large scales.

§ We further reduce the ytopt overhead by improving efficiency of python codes,
reducing the application compiling time with pre-compiling the unchanged code
files or pre-compiling the whole code by passing the parameter values to the
command line.

Acknowledgements

§ This work was supported in part by

– DoE ECP PROTEAS-TUNE

– DoE ASCR RAPIDS2

– NSF grant CCF-2119203

