
Spack for Tools
What can Spack do for tools?

• Todd Gamblin
• Tim Haines
• Nate Hanford
• Rashawn Knapp

• Jim Kupsch
• Matt Legendre
• Martin Schulz



What can Spack do to help tools integrate 
with large software stacks?
• How should tool packages be modeled in Spack?

• How do tools’ relationships with packages they analyze/instrument 
differ from existing dependency types?

• What aspects of the build can Spack let tools control?
• Compiler wrappers?

• Flags?
• Inject tools?

• Build environment?



We came up with three usage scenarios

1. Basic instrumentation tools
• Produce an instrumented version of some package

2. Preload tools
• Ensure that compatible preloaded/injected libraries are available for some 

runtime environment

3. Analysis tools
• Provide access to source/build/installation
• Provide location to store output



Basic instrumentation

• lammps doesn’t declare a dependency on tool

• Tool declares itself as a tool package
1. Declares what dependency type(s) it should be when injected

• Probably some variant of a build dependency
• Maybe link dependencies

2. Injects self into Spack’s compiler wrappers in build env

3. Produces a lammps build with a unique hash
• Includes ^tool dependency in hashed metadata

spack install lammps ^tool

Example: score-p



Preload tools

• Build a version of some package that’s first-party (runtime/same process) 
compatible with another
• spack install openspeedshop-runtime ::lammps

• Make sure the runtime is compatible with this particular lammps
• Lammps side of this matches against installations by default and builds openspeedshop runtimes per 

installation or per configuration
• Tool frontend/backend

• Build openspeedshop-runtime in all configurations that make sense in an 
environment
• Env has several MPI’s, C++ compilers, etc.
• Need OSS runtimes per MPI per compiler, per some dep

• Package says granularity of runtime peer dependencies needed
• Combinatorial dependencies on peer packages

• depends_on(“runtime”, <specify per what>, type=“peer”)
• Per what == c x mpi (virtuals defining the matrix)

Example: openspeedshop



Tools that analyze source or binaries and 
produce output as an installation
• Tool doesn’t necessarily produce a new build

• It produces analysis of tool run on that package

• Spack needs to:
• give tools output installation directory
• come up with output name and hash based on metadata
• Peer deps on analysis inputs

• Need a syntax for doing a run that produces this output
• These are bad:

• spack install cppcheck-output ^lammps # run cppcheck as part of the build
• spack test lammps ^cppcheck ??

• spack install binary-analyzer-output ^lammps # run 

• Tools need to run at different times – provide hooks for these in tool package:
• Source stage time
• Configure time
• Build time
• After installation

Example: cppcheck



Overrides in tooled packages

• Instrumented/analyzed packages could provide overrides for certain 
analyzer tools
• Skip compiler instrumentation of this one C++ file
• Restrict set of cpp directives that can be used by analyzers?
• Provide own configurations for cppcheck, clang static analyzers?

• Could also have an option to ignore overrides
• In case the tool REALLY wants to instrument everything



Hooks in tool packages
• To say how package should be shimmed into builds

• Is it a run dep, link dep, etc.?

• How packages should use compiler wrappers
• Strip args?
• Translate args?
• Add args?
• Inject instrumenting compiler?

• What versions of peer deps should be built for a particular env?
• Inject a guaranteed compatible runtime library as a link dependency
• mpip as an example

• Need hooks before and after concretization
• Injecting flags – before concretization
• How to inject link/run deps into a package before concretization?

• Match on particular packages that you want to “become” a dependency of



Discoverability of tools

• Could we tag applications as tools in Spack?
• Can already tag packages with ids, but no great browser interface for that
• Let users search specifically for tool packages
• See syntax for using a tool with some package

• Could we use this to do comparative analysis of different tools?
• Find all the instrumentation tools, compare what they do
• Hard to generalize this.


