
Tools and GPU Runtimes Working Group Outbrief

John Mellor-Crummey (Lead and Scribe)

23 June 2022

Tool Concerns
• Initialization

• when should a tool be initialized?

• before main

• before most constructors

• before offloading to GPU

• before creating threads that need to be monitored

• Threads

• programming models and runtimes have threads for many purposes

• MPI progress thread, OpenMP workers, runtime support for managing GPU offloading

• some threads exist only to support tools

• monitoring kernel launches, reporting asynchronous events, recording activities

• not all of these threads should be monitored

2

Potential Approaches

• Have each library maintain state about each thread it is trying to create + an inquiry API

• where is the state maintained?

• how does a tool use the API to access that state?

• Pass an attribute to pthread create that indicates the role of the thread

• information at the right time. arguments with a standards committee would be endless

• Assign each thread a name based on its role: pthread_setname_np, pthread_getname_np

• https://man7.org/linux/man-pages/man3/pthread_setname_np.3.html

• name may only be assigned after a thread is created

• Metadata in compiled code

3

The Most Promising Approach: Metadata in Compiled Code
• ELF Notes

• See : https://man7.org/linux/man-pages/man5/elf.5.html

• ELF notes allow for appending arbitrary information for the system to use.

 typedef struct {
 Elf64_Word n_namesz;
 Elf64_Word n_descsz;
 Elf64_Word n_type;
 } Elf64_Nhdr;

 /* The buffer is pointing to the start of the section/segment. */
 note = memory;

 /* If the name is defined, it follows the note. */
 name = note->n_namesz == 0 ? NULL : memory + sizeof(*note);

 /* If the descriptor is defined, it follows the name
 (with alignment). */

 desc = note->n_descsz == 0 ? NULL :
 memory + sizeof(*note) + ALIGN_UP(note->n_namesz, 4);

 /* The next note follows both (with alignment). */
 next_note = memory + sizeof(*note) +
 ALIGN_UP(note->n_namesz, 4) +
 ALIGN_UP(note->n_descsz, 4);

• Inspiration: Systemtap drace markers https://github.com/jav/systemtap/blob/master/includes/sys/sdt.h

4

Information in a Hypothetical Function Note
• The basics

• Location of thread or initialization function in binary

• SDT inserts a no-op in the beginning of a function and records a note that points to it

• could use a similar strategy to relate note back to thread function

• Encoding information in a function note string

• Version number

• Property list to contain important information?

• perhaps in json information?

• Useful information to be encoded in a function note

• Thread function

• Tool thread, tool support thread …

• Thread created while holding a lock

• Threads that are targets for signal handlers

• Runtime initializer

• e.g. zeInit, cuInit

• when should a tool be initialized

• e.g. before the runtime, after the runtime

5

Using Function Notes
• As a tool loads a module

• process all notes in the module to parse and record all thread function notes

• When a thread is created

• tool can use thread note to decide how to handle the thread

6

