Answer Set Solving in Spack

Tackling combinatorial software complexity head-on

Scalable Tools Workshop Todd Gamblin
June 21, 2022 Livermore Computing

LLNL-PRES-826942 H Lawrence Livermore

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE- i
AC52-07NA27344. Lawrence Livermore National Security, LLC National Laboratory

What is Spack?

= Su percomputing PACKage manager Spack builds for machines like these
(and for your laptop/cloud node/cluster)

-

' Lawrence Berkeley
ORNL/LLNL National Lab

= Language-agnostic

— Focused originally on build from source

Current top systems

,:] ; ”~

— Now focused on both source and binary

= Allows arbitrarily many installs of any package

RIKEN
Fujitsu/ARM a64fx Power9d / NVIDIA GPU AMD Zen / NVIDIA GPU

= [nspired by Nix + Homebrew

— More flexible package model than either

, _ Machines coming soon
— Solver, spack.yaml manifests, lockfiles, envs 8

= Thousands of users worldwide hafliror e FRONTIER

— 6,400 packages so far Argonne National Lab Oak Ridge National Lab Lawrence Livermore
. Intel Xeon / Xe AMD Zen / MI200 GPU National Lab
— 1,000+ contributors AMD Zen / AMD GPU

. . ("‘I
Lawrence Livermore National Laboratory N A‘S‘@é‘l 2
National Nuclear Security Administration

LLNL-PRES-826942

Scientific libraries span C++, C, Fortran, Python, Lua, and more

MFEM: LBANN: Neural Nets for HPC

Higher-order finite elements
31 packages,
69 dependencies

J
openmpi il metis
&
4
itoc Y Wemin"/ expat gettext J| Vibfi
(S =

N

(%

71 packages
188 dependencies

d

T
Xl sy \
Kl | S
LI Pzt

e

&« \'i]/ * s

kgconf

Spack provides a spec syntax to describe customized package
configurations

$ spack install mpileaks unconstrained

$ spack install mpileaks@3.3 @ custom version

$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler

$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option

$ spack install mpileaks@3.3 cppflags="-03 -g3" set compiler flags

$ spack install mpileaks@3.3 target=cascadelake set target microarchitecture
$ spack install mpileaks@3.3 Ampich@3.2 %gcc@4.9.3 A dependency constraints

= Each expression is a spec for a particular configuration
— Each clause adds a constraint to the spec
— Constraints are optional — specify only what you need.
— Customize install on the command line!

= Spec syntax is recursive
— Full control over the combinatorial build space

. - "‘l
Lawrence Livermore National Laboratory N Sﬁggé“ 4
National Nuclear Security Administration

LLNL-PRES-826942

Spack packages are parameterized using the spec syntax

Python DSL defines many ways to build

Not shown: patches, resources, conflicts,

other directives.

from spack import x

class Kripke(CMakePackage) :
"""Kripke is a simple, scalable, 3D Sn deterministic particle transport mini-app."""

homepage = "https://computation.llnl.gov/projects/co-design/kripke"

url = "https://computation.llnl.gov/projects/co—-design/download/kripke—-openmp-1.1.tar.gz"
version(‘1.2.3", sha256="'3f7f2eef@d1ba5825780d626741eb@b3f0262096048d7ec4794d2a7dfbe2b8ab"’)
version(‘1.2.2', sha256="'eaf9ddf562416974157b34d00c3a1c880fc5296fce2aa2efa®39a86e0976f3a3’)
version('1.1’, sha256='232d74072fc7b848fa2adc8albc839ae8fb5f96d50224186601f55554a25f64a")
variant('mpi', default=True, description='Build with MPI.’")

variant('openmp', default=True, description='Build with OpenMP enabled.’)

depends_on('mpi', when='+mpi’)
depends_on('cmake@3.0:"', type='build’)

def cmake_args(self):
return [
'-DENABLE_OPENMP=%s’ % ('+openmp’ in self.spec),
'-DENABLE_MPI=%s' % ('+mpi’ in self.spec),
]

def install(self, spec, prefix):
mkdirp(prefix.bin)
install('../spack-build/kripke', prefix.bin)

One package.py file per software project!

-

e

S—

—

}
}

}

e

Base package
(CMake support)

Metadata at the class level

Versions

Variants (build options)

Dependencies
(same spec syntax)

Install logic
in instance methods

Don’t typically need install() for
(MakePackage, but we can work
around codes that don’t have it.

Lawrence Livermore National Laboratory
LLNL-PRES-826942

N

National Nuclear Security Administration

Spack DSL allows declarative specification of complex constraints

CudaPackage: a mix-in for packages that use CUDA

class (PackageBase):
variant('cuda', default= ,
description="Build with CUDA"')

cudais a variant (build option)

variant('cuda_arch', cuda_arch isonly present
description="CUDA architecture', if cuda is enabled

values=any_combination_of(cuda_arch_values),
when="+cuda')
dependency on cuda, but only

depends_on('cuda', when="+cuda") if cuda is enabled

depends_on('cuda@9.0:", when="cuda_arch=70") _ _
depends_on('cuda@9.0: "', when="cuda_arch=72") constraints on cuda version
depends_on('cuda@10.0: ", when="cuda_arch=75")

conflicts('%gcc@9:"', when='"+cuda Acuda@:10.2.89 target=x86_64:") compiler support for x86_04
conflicts('%gcc@9:', when='+cuda Acuda@:10.1.243 target=ppc6sle:') [FEIgleNs]olelsZANE

There is a lot of expressivity in this DSL.

. . ("‘l
Lawrence Livermore National Laboratory N A‘S‘Qi‘\ 6

LLNL-PRES-826942

In Spack, concretization converts an abstract spec
to a real (concrete) installation

mpileaks ~callpath@l.0+debug ~libelf@0.8.11 User input: abstract spec with some constraints
spec.yaml
g npileaks mpiLeakse?. 3 > hpileaks:
= __LQCC o '64 arch: 1linux-x86_64
3 =L1nux-ppcC compiler:
) \ \ name: gcc
QD version: 4.9.2
== d dencies:
CND ezggpirjﬁtie%s: kszrtkpbzac3ss2ixcjkcorlaybnptp4
callpath@l.0 callpath@l.o callpath: bah5f4h4dZna7mgycej2mtrnrivvxy77
+debug %gcc@ad. 7. 3+debug ot B3 v pEayanSpioyeT oy
=linux-ppc64 variants: 1}
/ l X version: '1.0Q'
- adept-utils:
arch: 1linux-x86_64
0 iler:
. . Concretize : - r Cane: g
mpt dyninst H;Eglccckg..;).; d)g?glcncs@}:fS?..ljz Store Version; 4.9.2
- _ - _ d dencies:
\ =linux-ppco4 =linux-ppce4 eEggsi?ctgzstehpeSksspjim5dk4307qnow1q
mpich: aa4ar6ifj23yijgmdabeakpejcli72t3
\ hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
variants: {}
version: 1.0.1
. libd f@20130729 - boost:
Libdwarf ! 9?9%2@4_7‘3 Ogich: linux-x86_64
=linux-ppc64 compiler:
name: gcc
/ version: 4.9.2
d dencies:
/ hzgﬁ? iggéﬁ\sl?eé}p;eSksspjim5dk4307qnow1q
iants:
. libelfen.5.11 Vereton: 1759.0
libelf@0.8.11 %gcc@4.7.3
=linux-ppc64
Abstract, normalized spec Concrete spec is fully constrained Detailed provenance is stored
with dependencies known a priori. and can be passed to install. with the installed package
Lawrence Livermore National Laboratory N A'S&’-ifé

LLNL-PRES-826942 National Nuclear Security Administration

Package. solving is cc.)m.bmgtorlal search with . oroblem is NP-hard!
constraints and optimization

= Search over a solution space:
— Possible dependency graphs (nodes, edges)
— Assignment of node and edge attributes
Version

« Dependency, dependency type
« Compiler, compiler version

Target
Compiler, compiler version

= Subject to validity constraints:
— Version requirements
— Target/compiler compatibility
— Virtual providers

= Optimization picks “best” among valid solutions:
— Most recent versions
— Preferred variant values
— Preferred compilers that support best targets (e.g., AVX-512)
— Minimize number of builds

. . ("‘I
Lawrence Livermore National Laboratory N A‘S’fﬁ’%‘\ 8
National Nuclear Security Administration

LLNL-PRES-826942

There are much better solutions out there than SAT Solvers

= SAT: Boolean Satisfiability
— Hard to model the problem space with just True and False to work with
— Optimization is very hard to implement on top (and slow)

= SMT: Satisfiability modulo theories
— Support for integer math, implications, higher level logic operations

— Support for multi-criteria optimization
— Traction in the formal verification community
— Can generate unsatisfiable cores and proofs for error cases (but proofs are complex)

= ASP: Answer Set Programming (not the other ASP)

— Clingo (from the Potassco project) is very actively developed, and very fast
— Looks like prolog; boils down to SAT

— Easy to read, declarative modeling language ==2 P
— Support for multi-criteria optimization Son Otas S C O

— Can produce unsatisfiable cores that help explain errors.

All of these use fast SAT solvers, but ASP is a much higher level paradigm.

. - "‘l
Lawrence Livermore National Laboratory NYSE o
National Nuclear Security Administration

LLNL-PRES-826942

Crash course in ASP

= ASP syntax is derived from Prolog
= Basic piece of a program is a term

= Terms can easily represent any data
structure, e.g. this is a graph with:

— 2 nodes, one with a variant value

— 1 dependency edge

= Terms followed by '." are called facts

— Facts say "this is true!”

enable_some_feature.

node("lammps™).

node("cuda").

variant_value("lammps"”, "cuda", "False").

depends_on("lammps", "cuda", "link").

lL Lawrence Livermore National Laboratory

LLNL-PRES-826942

(v H
NYSE o
National Nuclear Security Administration

Crash course in ASP

= ASP programs also have rules. = Comma in the body is like "and"
— Rules can derive additional facts. — Writing same head twice is like "or"
= :- can be read as "if" = Capital words are variables
— The head (left side) is true — Rules are instantiated with all possible

— If the body (right side) is true substitutions for variables.

node(Dependency) :- node(Package), depends_on(Package, Dependency, Type).

- - node("lammps™).
SRl G <j ' depends_on("lammps", "cuda", "link").

. . (24
lL Lawrence Livermore National Laboratory N IS{_%“ 11
National Nuclear Security Administration

LLNL-PRES-826942

Crash course in ASP

= Constraints say what cannot happen

path(A, B) :- depends_on(A, B).
path(A, C) :- path(A, B), depends_on(B, O).

:- path(A, B), path(B, A). % this constraint says "no cycles”

= Choice rules give the solver freedom to choose from possible options:

% 1f a package is in the graph, solver must choose exactly one version
% out of that package's possible versions
1 { version(V) : possible_version(Package, V) } 1 :- node(Package).

. . (,‘.l
IL Lawrence Livermore National Laboratory NIYSE o«
LLNL-PRES-826942 National Nuclear Security Administration

ASP searches for stable models of the input program

= Stable models are also called answer sets

= A stable model (loosely) is a set of true atoms that can be
deduced from the inputs, where every rule is idempotent.

— Similar to fixpoints

— Put more simply: a set of atoms where all your rules are true!

= Unlike Prolog:
— Stable models contain everything that can be derived (vs. just querying values)
— ASP is guaranteed to complete!

Lawrence Livermore National Laboratory
LLNL-PRES-826942

(2
NYSE
National Nuclear Security Administration

Spack’s concretizer is now implemented in ASP

= Used Clingo, the Potassco grounder/solver package

0
1
2
3
4
5
6
7
8
9
1

= ASP program has 2 parts:
1. Large list of facts generated from package recipes (problem instance)
« 60k+ facts is typical — includes dependencies, options, etc.
2. Small logic program (~700 lines of ASP code)

= Algorithm (the part we write) is conceptually simpler:
— Generate facts for all possible dependencies
— Send facts and our logic program to the solver
— Rebuild a DAG from the results

Some facts for HDF5 package

Lawrence Livermore National Laboratory N AVS&{_;}& 14

LLNL-PRES-826942

ASP makes it easy to put the logic in one place, declaratively

Define the space:

each package must be assigned "r- % If something is a package, it has only one version and that must be a
% possible version.

exactly one version. B 1 { version(P, V version_possible(P, V 1 node(P
Disall flicted . B % If a version is declared but conflicted, it's not possible.
ISallow contiictea versions - version_possible(P, V version_declared(P, V version_conflict(P, V
sl % version weight and optimization
Minimize the total of all version version_weight(P, V, N version(P, V), version_declared(P, V, N
. Ne8,P,V : version_weight(P, V, N
weights L :

Lawrence Livermore National Laboratory N A‘S@i‘\ 15

LLNL-PRES-826942

Previously complicated ABIl/target logic became very simple

= Every node in the DAG has a compiler and a target architecture

— Some compilers don’t support generating code for some targets
— But we want to pick the best target possible for each compiler

= Previously this required some complicated logic mixed in with the rest of the solve

Each node has 1 target assigned % one target per node -- optimization will pick the "best" one
1 { node_target(P, T target(T 1 node(P
D- ” h th | % can't use targets on node if the compiler for the node doesn't support them
ISallOW Cas€es wnere € complier node_target(P, T compiler_supports_target(C, V, T
doesn't Support the target node_compiler(P, C), node_compiler_version(P, C, V
% 1f a target is set explicitly, respect it
node_target(P, T node(P), node_target_set(P, T
Minimize the total We|ght of % each node has the weight of its assigned target
node_target_weight(P, N node(P node_target(P, T), target_weight(T, N
all targEtS N@5,P : node_target_weight(P, N

Lawrence Livermore National Laboratory N A‘S@i‘\ 16

LLNL-PRES-826942

Encoding generalized conditions was more tricky

= Every condition in the solve gets an id

— Triggers (requirements) and imposed constraints are associated with the condition id.
— Different types of conditions have different semantics (dependencies, conflicts, etc.)

"If cmake is at version 3.15 or higher, and NOT using vendored libraries (ownlibs),
it depends on libarchive version 3.3.3 or higher"

YT TGNl depends_on(' Libarchive@3.3.3: ", when="'@3.15.0:~ownlibs')

condition(175

condition_requirement(175,"node"," cmake"

condition_requirement(175, "version_satisfies", "cmake","3.15.0:"
condition_requirement(175,"variant_value","cmake","ownlibs", "False"

ASP Facts

imposed_constraint(175, "version_satisfies","libarchive","3.3.3:"
dependency_condition(175,"cmake","libarchive"”
dependency_type(175, "build"

dependency_type(175, "1ink"

Lawrence Livermore National Laboratory N AVS‘;{_Q”&“ 17

LLNL-PRES-826942

Code to trigger and impose general conditions
is surprisingly simple (to read)

= Conditional Rules allow us to build new rules from input facts
— Colon here says "if this requirement is true, then put it in the rule body"
condition_holds(ID

condition(ID -
attr(Name, Al condition_requirement(ID, Name, Al

Same rule,
—

attr(Name, Al, A2 condition_requirement(ID, Name, Al, A2 : :
different arity

attr(Name, Al, A2, A3 condition_requirement(ID, Name, Al, A2, A3

= A condition that holds imposes its constraints (unless canceled w/do_not_impose)

impose(ID condition_holds(ID do_not_impose(ID

= Impose all constraints if impose(ID) is true.

attr(Name, Al impose(ID), imposed_constraint(ID, Name, Al
attr(Name, Al, A2 impose(ID), imposed_constraint(ID, Name, Al, A2

attr(Name, Al, A2, A3 impose(ID), imposed_constraint(ID, Name, Al, A2, A3

Lawrence Livermore National Laboratory N AVS‘;{_Q”&“ 18

LLNL-PRES-826942

We use optimization to choose the “best” of all valid solutions

= Tend to be a lot of valid solutions in Spack
— Many versions can satisfy given constraints
— Most packages have loose constraints

Priority Criterion (to be minimized)

Deprecated versions used

Version oldness (roots)

Non-default variant values (roots)
Non-preferred providers (roots)
Unused default variant values (roots)
Non-default variant values (non-roots)
Non-preferred providers (non-roots)
Compiler mismatches

OS mismatches

Non-preferred OS’s

Version oldness (non-roots)

Unused default variant values (non-roots)
Non-preferred compilers

Target mismatches

Non-preferred targets

= Choosing configurations that are “intuitive”

to users can be difficult
— Build specification is more of an art than a science

= We've added 15 "base” optimization criteria
to our solver

= Currently, criteria for roots are prioritized and

other nodes are aggregated.

— Would really like DAG precedence

— Has proven hard to implement efficiently so far
but we have ideas

(SO R G VR S — Y

. . ("‘I
Lawrence Livermore National Laboratory N A‘S@é‘\ 19
National Nuclear Security Administration

LLNL-PRES-826942

Many packaging systems reuse builds via metadata hashes

’////,:.mm

mpileaks | libdwarf
: e callpath | ;yninst /'I \4= Libelf 1. Resolve metadata - HaSh matCheS are very
| : - | , sensitive to small changes
| ; Lo | : 2. Create per-node hashes
[| I 1 [1
| 1 * . .
i i i : l cwx4qwk4bkamf4gjrglmxfu3bhasyt74 " In many Casesl d SatISfylng
: : : : go2af23rZnpatxdtna3fmwkeennywixp Cached or already |nsta”ed
I I ! .
: i : kZ)v/umgquGijubivfpbjpmrrbzchoot Spec can be mISSEd
IR -
I
: i 4xxvh51dtn?gm32ngtixcm20daer'3cwb N Nix’ Spack’ GuiX’ Conan’
: v
I
I

74mwnxgnenujehpyyalhwizwojwnszga _/ Package cache and others reuse this way
?? b 4
Y N S

6zvh4ueemofSyrcfugh67k2hrtxbgbcs
2vhad yrerug x09 3. Query for exact hash match

. . ("‘I
Lawrence Livermore National Laboratory N A‘S‘?é‘\ 20
National Nuclear Security Administration

LLNL-PRES-826942

We can be more aggressive about reusing packages.

First, we need to tell the solver about all the installed packages!

* Add constraints for all installed packages, with their hash as the associated ID:

installed_hash("openssl","lwatuuysmwkhuahrncywvn77icdhsémn”
imposed_constraint
imposed_constraint
imposed_constraint
imposed_constraint
imposed_constraint
imposed_constraint

imposed_constraint
imposed_constraint
imposed_constraint
imposed_constraint
imposed_constraint
imposed_constraint

"lwatuuysmwkhuahrncywvn77icdhsémn

"lwatuuysmwkhuahrncywvn?77icdhsémn”

"lwatuuysmwkhuahrncywvn?771icdhsémn™
"lwatuuysmwkhuahrncywvn77icdhsémn™
"lwatuuysmwkhuahrncywvn77icdhsémn™
"lwatuuysmwkhuahrncywvn77icdhsémn™

"1watuuysmwkhuahrncywvn?77icdhsémn”

"lwatuuysmwkhuahrncywvn?77icdhsémn™
"lwatuuysmwkhuahrncywvn77icdhsémn™

"lwatuuysmwkhuahrncywvn?77icdhsémn"

"lwatuuysmwkhuahrncywvn77icdhsémn™
"lwatuuysmwkhuahrncywvn77icdhsémn™

node
"version
"node_platform_set
"node_os_set","

openssl”

openssl","1.1.1g"

openssl”

"darwin"

openssl","catalina"

"node_target_set","openssl”, "x86_64"

"variant_set
"node_compiler_set

"node_compiler_version_set
openssl”
openssl","zlib","build"
openssl","zlib","1link"

"concrete
"depends_on
"depends_on

n n

openssl”

openssl","systemcerts","True").

"apple-clang”
openssl","apple-clang","12.0.0").

"hash","zlib","x2anksgssxsxa7pcnhzg5k3dhgacglze").

L

LLNL-PRES-826942

Lawrence Livermore National Laboratory

e\
\ 2.5,
' 4
N A S,._O q 21
National Nuclear Security Administration

Telling the solver to minimize builds is surprisingly simple:
it's just the impose half of a generalized condition.

1. Allow the solver to choose a hash for any package:

hash(Package, Hash installed_hash(Package, Hash 1 node(Package

2. Choosing a hash means we impose its constraints:

impose(Hash hash(Package, Hash

3. Define a build as something without a hash:

build(Package hash(Package, _), node(Package

4. Minimize builds!

1@100,Package : build(Package

lL Lawrence Livermore National Laboratory N AVS@%\ 22

LLLLLLLLLLLLLLL

With and without reuse optimization

spackle):solver solve -Il hdf5
==> Best of 9 considered solutions.
==> Optimization Criteria:

Priority Criterion Installed ToBuild
number of packages to build (vs. reuse) - 20
deprecated versions used
version weight
number of non-default variants (roots)
preferred providers for roots
default values of variants not being used (roots)
number of non-default variants (nhon-roots)
preferred providers (non-roots)
compiler mismatches
0S mismatches
non-preferred 0S's
version badness
default values of variants not being used (nhon-roots)
non-preferred compilers
target mismatches
non-preferred targets

(SIS RS IS ISR SIS IS I SIS B B SIS
OOOONOOOOOOOe

hdf5@1.10.7 ~cxx~fortran~hl~ipo~java+mpi+shared~szip~threadsafe+tools api=default Y
Acmake@3.21. 4 ~doc+ncurses+openssl+ownlibs~qt build_type=Release
Ancurses@6.2 ~symlinks+termlib abi=none
Apkgconf@1.8.0
Aopenssl@1.1.11 ~docs certs=system
Aperl@5.34.0 +cpanm+shared+threads
Aberkeley-db@18.1.40 +cxx~docs+stl patches=b231fcc4d5cff@5e5c3a4814
Abzip2@1.0.8 ~debug~pic+shared
Adiffutils@3.8
Alibiconv@l. 16
Agdbm@1 . 19
Areadline@8. 1!
Az1ib@1.2.11 +optimize+pic+shared
Aopenmpi@4. 1.1 ~atomics~cuda~cxx~cxx_exceptions+gpfs~internal-hwloc~java~legac
Ahwloc@2.6.0 ~cairo~cuda~gl~libudev+1libxml2~netloc~nvml~opencl~pci~rocm+shd
Alibxml2@2.9.12 ~python
Axz2@5.2.5 ~pic libs=shared,static
Alibevent@2.1.12 +openssl
Aopenssh@g. 7p1!
Alibedit@3.1-20210216

libs=shared,static

Pure hash-based reuse: all misses

UL. Lawrence Livermore National Laboratory

LLNL-PRES-826942

Note the bifurcated
optimization criteria

spackle):spack solve --reuse -I1 hdf5
==> Best of 1@ considered solutions.
==> Optimization Criteria:
Priority Criterion

number of packages to build (vs. reuse)
deprecated versions used
version weight
number of non-default variants (roots)
preferred providers for roots
default values of variants not being used (roots)
number of non-default variants (non-roots)
preferred providers (non-roots)
compiler mismatches
0S mismatches
non-preferred 0S's
version badness
default values of variants not being used (non-roots)
non-preferred compilers
target mismatches
non-preferred targets

Installed ToBuild

=
OO UIRPOOSOOSOONOOOSS®
SO PO M

hdf5@1.10.7 ~cxx~fortran~hl~ipo~java+mpi+shared~szip~threadsafe+tools api=defaul
Acmake@3 .21 .1 ~doc+ncurses+openssl+ownlibs~qt build_type=Release
Ancurses@6. 2 ~symlinks+termlib abi=none
Aopenssl@1.1.11 ~docs+systemcerts
Azlib@1.2.11 +optimize+pic+shared
Aopenmpi@4.1.1 ~atomics~cuda~cxx~cxx_exceptions+gpfs~internal-hwloc~java~leg
Ahwloc@2.6.0 ~cairo~cuda~gl~libudev+libxml2~netloc~nvml~opencl~pci~rocm+
Alibxml2@2.9.12 ~python
Alibiconv@l.16 libs=shared,static
Ax2@5.2.5 ~pic libs=shared,static
Apkgconf@1.8.0
Alibevent@2.1.12 +openssl
Aopenssh@g . 6pl!
Alibedit@3.1-20210216
Aperl@5.34.0 +cpanm+shared+threads
Aberkeley-db@18.1 .40 +cxx~docs+stl patches=b231fcc4d5cff@5e5c3a4814f
Abzip2@1.0.8 ~debug~pic+shared
Agdbm@1 .19
Areadline@8. 1

With reuse: 16 packages were actually acceptable

N A'&-a\

National Nuclear Security Administration

We had to take some special steps to make the builds less weird

= |f we just minimize builds, we get strange behavior when we have to build things new

— E.g.: Cmake depends on openssl for https
— Minimizing builds will toggle this feature off, but most users wan a functional Cmake

= We made the following change:
— Prioritize minimizing builds, unless we have to build
— Prioritize defaults for specs we have to build

= Rationale:
— If you’ve installed some version of something, you’re probably ok with that version
— You can use —fresh to get a completely up-to-date install

= To get this to work:
— All criteria must be formulated as minimizations
— No built configuration can be “better” than a reused configuration

. . ("‘l
Lawrence Livermore National Laboratory NVYSE
National Nuclear Security Administration

LLNL-PRES-826942

So far, it looks like we can handle very large problem sizes
with the reusing solver

= Cumulative distribution
of setup and solve times

= Hypothesis: we don’t
see big combinatorial
blow-up b/c we're strict
about dependency
hashes

= Next: try mixed ABI, but
prefer "pure" source-
built dependencies

4000 -

3000 -

Package count

1000

2000

setup
—— 6804 cached pks
—— 15255 cached pks
—— 27160 cached pks
—— 63099 cached pks
0 20 40 60 80 100 120

Sec
Most of the time is spent in setup

(reading data in Python — can be sped up w/caching)

Package count

solve

4000 -

3000 -

2000 -

1000 A

1 —— 63099 cached pks

—— 6804 cached pks
—— 15255 cached pks
—— 27160 cached pks

0 5 10 15 20 25 30 35
Sec

Even with 63k packages in a repo,
nearly all package solves take < 10 sec

Lawrence Livermore National Laboratory
LLNL-PRES-826942

(2748
NS
National Nuclear Security Administration

Future work: integrate pairwise success likelihood into the
solver, to guide it to high-likelihood solutions.

boost

automake autoconf sqlite
2.3.1 - O
L 2.3.0- O 4
2 225- -
2 2.1.4 - B 0 -9
2.0.2 - m m =
1.5.2 -
I I I I | I I 1 1 I 1 I I 1 1 1 I] [} 1 I [} I I I I 1 I 1 1 I 1 1] I 1 I | - 0
o S o o) o o — o S o o o o (== o — o o o [e=] (@) [e=] e — — [a] o N o o — o S — S [ye] 0
I = Y = T T T T T T S = e L A e < T = S . S S Y
IR B A A S T A O - B - B - - TN - T S S T B B N A B S B T B B B B B
autocont automake c-blosc libtool mpich SZ ztp
develop - B] \ | \ 3
1.13.1 - | = - l
1.13.0 -
2 1120 - u = l .\ 2
91111 -
1.11.0 - -1
1.10.0 - | | |
1.9‘0 i I 1 I 1 1 1 I | I I I 1 I 1 I I 1 1 1 1 1 I I 1 1 I 1 I 1 1 I I 1 I 1 I 1 I 1 1 1 1 I 1 I 1 1 I - 0
RSBRE s R o 2 B SR 338 o b i e 33 e pipe 2 e e k2 v i ol oy e e
NNNN e =N NI ® womewd e odod © S 333383
— o — — - — —{q% _g jjjjj"‘
We can explore the build space and find configurations that are likely to work
— We run rouhly 40k builds in Cl each week
— Fuzz the Cl builds to build a model like the one above
Next steps:
— Use these weights with an optimization function to guide the solver
— Investigate online training, update strategies to keep model current for low CPU cost
— Investigate transfer learning for porting from one system to another
Lawrence Livermore National Laboratory \/ ngg‘
LLNL-PRES-826942

National Nuclear Security Administration

B Lawrence Livermore
National Laboratory

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

