
LLNL-PRES-826942
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Answer Set Solving in Spack
Tackling combinatorial software complexity head-on

Todd Gamblin
Livermore Compu3ng

Scalable Tools Workshop
June 21, 2022

2
LLNL-PRES-826942

What is Spack?

§ Supercomputing PACKage manager

§ Language-agnostic
— Focused originally on build from source
— Now focused on both source and binary

§ Allows arbitrarily many installs of any package

§ Inspired by Nix + Homebrew
— More flexible package model than either
— Solver, spack.yaml manifests, lockfiles, envs

§ Thousands of users worldwide
— 6,400 packages so far
— 1,000+ contributors

Lawrence Livermore
Na.onal Lab

AMD Zen / AMD GPU

ORNL/LLNL
Power9 / NVIDIA GPU

Summit &
Sierra

Lawrence Berkeley
National Lab

AMD Zen / NVIDIA GPU

NERSC-9
Perlmutter

Oak Ridge Na.onal Lab
AMD Zen / MI200 GPU

Argonne National Lab
Intel Xeon / Xe

Aurora

Current top systems

Machines coming soon

RIKEN
Fujitsu/ARM a64fx

Fugaku

Spack builds for machines like these
(and for your laptop/cloud node/cluster)

3
LLNL-PRES-826942

Scien/fic libraries span C++, C, Fortran, Python, Lua, and more

sqlite

readline

zlib

cmake

ncurses

openssl

py-setuptools

python

cub

libjpeg-turbo

nasm

py-pyparsingpy-pillow

libxml2

xz

libiconv

pkgconf

automake

autoconf

perl

py-cycler

py-six

py-protobuf

protobuf

libffi

bzip2

gdbm

expatgettext

texinfo

freetype

libpng py-kiwisolver

py-numexpr

py-numpy

ninja

py-onnx

py-typing py-typing-extensionsopenblas

cnpy

diffutils

m4

libtiff py-pytznccl

cuda

py-cython

libsigsegv

conduit

mpich

hdf5

py-setuptools-scm

findutils

py-matplotlib

py-python-dateutil

py-configparser

libtool

tar

cereal

hydrogen

aluminum

hwloc

py-graphviz

py-pandas

py-bottleneck

cudnn

lbann

py-texttable

opencv

71 packages
188 dependencies

LBANN: Neural Nets for HPC

ASCLaser

rng

openmpi

opclient

cmake

silo

fontsproto

pkgconf

util-macros

selene

tdf

nuclear

physicsutilsvtkm

libpthread-stubs

lua

readline

ncurses

unziplibxscrnsaver

libxext

libx11

xextproto

scrnsaverproto

ares

memusage

conduit

umpire

chaipy-nose

python

msliblunum py-scipy gsl

Pmw

hyprescallop

Leos

bzip2

caliper Laser

hdf5

py-numpy

Cheetah bdivxml

samsa

zlib

tk

GA

lapack

gperftools

Tetoncretin

boost

axom

overlink

ascent

tcl

rajahpdf

c2c

matprop

timers

ASCMemory

sgeos_xml

SAMRAI DSD

miranda

cub

geodyn_matvtkh

xproto

openblas

sqlitelibxdmcp

inputproto

freetype

libpng

xtrans

py-setuptools

kbproto

libxcb

perl

openssllibffi gettextexpat

gdbm

font-util

automakemkfontdir

mkfontscale autoconf

bdftopcf

libxml2

xz

tar

hwloc

m4

libsigsegv

libxrender

renderproto

apple-libunwind

cnmem

gperf

xcb-proto libxau

diffutils

libiconv

libxfont

libfontenc

libxft

fontconfig

115 packages
335 dependencies

ARES: LLNL Mul2-physics

cmake

ncurses

openssl

diffutils

libiconv

pkgconf

libffi

zlib

hypre

openmpi

openblashdf5

python

sqlite

gettext

gdbm xz

readline

expat

bzip2perl

sundials

libxml2

tar

hwloc

metis

mfem

petsc

superlu-dist

parmetis

MFEM:
Higher-order finite elements

31 packages,
69 dependencies

4
LLNL-PRES-826942

§ Each expression is a spec for a par/cular configura/on
— Each clause adds a constraint to the spec
— Constraints are op2onal – specify only what you need.
— Customize install on the command line!

§ Spec syntax is recursive
— Full control over the combinatorial build space

Spack provides a spec syntax to describe customized package
configurations

$ spack install mpileaks unconstrained
$ spack install mpileaks@3.3 @ custom version
$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option
$ spack install mpileaks@3.3 cppflags="-O3 –g3" set compiler flags
$ spack install mpileaks@3.3 target=cascadelake set target microarchitecture
$ spack install mpileaks@3.3 ^mpich@3.2 %gcc@4.9.3 ^ dependency constraints

5
LLNL-PRES-826942

Spack packages are parameterized using the spec syntax
Python DSL defines many ways to build

Metadata at the class level

Versions

Install logic
in instance methods

Dependencies
(same spec syntax)

Not shown: patches, resources, conflicts,
other directives.

from spack import *

class Kripke(CMakePackage):
"""Kripke is a simple, scalable, 3D Sn deterministic particle transport mini-app."""

homepage = "https://computation.llnl.gov/projects/co-design/kripke"
url = "https://computation.llnl.gov/projects/co-design/download/kripke-openmp-1.1.tar.gz"

version(‘1.2.3’, sha256='3f7f2eef0d1ba5825780d626741eb0b3f026a096048d7ec4794d2a7dfbe2b8a6’)
version(‘1.2.2’, sha256='eaf9ddf562416974157b34d00c3a1c880fc5296fce2aa2efa039a86e0976f3a3’)
version('1.1’, sha256='232d74072fc7b848fa2adc8a1bc839ae8fb5f96d50224186601f55554a25f64a’)

variant('mpi', default=True, description='Build with MPI.’)
variant('openmp', default=True, description='Build with OpenMP enabled.’)

depends_on('mpi', when='+mpi’)
depends_on('cmake@3.0:', type='build’)

def cmake_args(self):
return [

'-DENABLE_OPENMP=%s’ % ('+openmp’ in self.spec),
'-DENABLE_MPI=%s' % ('+mpi’ in self.spec),

]

def install(self, spec, prefix):
mkdirp(prefix.bin)
install('../spack-build/kripke', prefix.bin)

Base package
(CMake support)

Variants (build options)

Don’t typically need install() for
CMakePackage, but we can work
around codes that don’t have it.One package.py file per software project!

6
LLNL-PRES-826942

cuda is a variant (build option)

cuda_arch is only present
if cuda is enabled

dependency on cuda, but only
if cuda is enabled

Spack DSL allows declarative specification of complex constraints

constraints on cuda version

compiler support for x86_64
and ppc64le

CudaPackage: a mix-in for packages that use CUDA

There is a lot of expressivity in this DSL.

7
LLNL-PRES-826942

In Spack, concre1za1on converts an abstract spec
to a real (concrete) installa/on

mpileaks ^callpath@1.0+debug ^libelf@0.8.11 User input: abstract spec with some constraints

Concrete spec is fully constrained
and can be passed to install.

mpileaks@2.3
%gcc@4.7.3
=linux-ppc64

mpich@3.0.4
%gcc@4.7.3
=linux-ppc64

callpath@1.0
%gcc@a4.7.3+debug

=linux-ppc64

dyninst@8.1.2
%gcc@4.7.3
=linux-ppc64

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

libdwarf@20130729
%gcc@4.7.3
=linux-ppc64

Abstract, normalized spec
with dependencies known a priori.

mpileaks

mpi

callpath@1.0
+debug

dyninst

libelf@0.8.11

libdwarf

N
orm

alize

Concretize Store

spec:
- mpileaks:

arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies:
adept-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
callpath: bah5f4h4d2n47mgycej2mtrnrivvxy77
mpich: aa4ar6ifj23yijqmdabeakpejcli72t3

hash: 33hjjhxi7p6gyzn5ptgyes7sghyprujh
variants: {}
version: '1.0'

- adept-utils:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies:
boost: teesjv7ehpe5ksspjim5dk43a7qnowlq
mpich: aa4ar6ifj23yijqmdabeakpejcli72t3

hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
variants: {}
version: 1.0.1

- boost:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies: {}
hash: teesjv7ehpe5ksspjim5dk43a7qnowlq
variants: {}
version: 1.59.0

...

spec.yaml

Detailed provenance is stored
with the installed package

8
LLNL-PRES-826942

§ Search over a soluEon space:
— Possible dependency graphs (nodes, edges)
— Assignment of node and edge aMributes
• Version
• Dependency, dependency type
• Compiler, compiler version
• Target
• Compiler, compiler version

§ Subject to validity constraints:
— Version requirements
— Target/compiler compaPbility
— Virtual providers

§ OpEmizaEon picks “best” among valid soluEons:
— Most recent versions
— Preferred variant values
— Preferred compilers that support best targets (e.g., AVX-512)
— Minimize number of builds

Package solving is combinatorial search with
constraints and optimization

cmake

ncurses

openssl

diffutils

libiconv

pkgconf

libffi

zlib

hypre

openmpi

openblashdf5

python

sqlite

gettext

gdbm xz

readline

expat

bzip2perl

sundials

libxml2

tar

hwloc

metis

mfem

petsc

superlu-dist

parmetis

This problem is NP-hard!

9
LLNL-PRES-826942

§ SAT: Boolean SaEsfiability
— Hard to model the problem space with just True and False to work with
— Op2miza2on is very hard to implement on top (and slow)

§ SMT: SaEsfiability modulo theories
— Support for integer math, implica2ons, higher level logic opera2ons
— Support for mul2-criteria op2miza2on
— Trac2on in the formal verifica2on community
— Can generate unsa2sfiable cores and proofs for error cases (but proofs are complex)

§ ASP: Answer Set Programming (not the other ASP)
— Clingo (from the Potassco project) is very ac2vely developed, and very fast
— Looks like prolog; boils down to SAT
— Easy to read, declara2ve modeling language
— Support for mul2-criteria op2miza2on
— Can produce unsa2sfiable cores that help explain errors.

There are much better solutions out there than SAT Solvers

All of these use fast SAT solvers, but ASP is a much higher level paradigm.

10
LLNL-PRES-826942

Crash course in ASP

§ ASP syntax is derived from Prolog

§ Basic piece of a program is a term

§ Terms can easily represent any data
structure, e.g. this is a graph with:
— 2 nodes, one with a variant value
— 1 dependency edge

§ Terms followed by '.' are called facts
— Facts say "this is true!"

enable_some_feature.

node("lammps").

node("cuda").

variant_value("lammps", "cuda", "False").

depends_on("lammps", "cuda", "link").

11
LLNL-PRES-826942

Crash course in ASP

§ ASP programs also have rules.
— Rules can derive additional facts.

§ :- can be read as "if"
— The head (left side) is true
— If the body (right side) is true

§ Comma in the body is like "and"
— Writing same head twice is like "or"

§ Capital words are variables
— Rules are instantiated with all possible

substitutions for variables.

node(Dependency) :- node(Package), depends_on(Package, Dependency, Type).

node("cuda") node("lammps").
depends_on("lammps", "cuda", "link").

12
LLNL-PRES-826942

Crash course in ASP

§ Constraints say what cannot happen

§ Choice rules give the solver freedom to choose from possible op/ons:

path(A, B) :- depends_on(A, B).
path(A, C) :- path(A, B), depends_on(B, C).

:- path(A, B), path(B, A). % this constraint says "no cycles"

% if a package is in the graph, solver must choose exactly one version
% out of that package's possible versions
1 { version(V) : possible_version(Package, V) } 1 :- node(Package).

% if a package is in the graph, solver must choose exactly one version
% out of that package's possible versions
1 { version(V) : possible_version(Package, V) } 1 :- node(Package).

% if a package is in the graph, solver must choose exactly one version
% out of that package's possible versions
1 { version(V) : possible_version(Package, V) } 1 :- node(Package).

% if a package is in the graph, solver must choose exactly one version
% out of that package's possible versions
1 { version(V) : possible_version(Package, V) } 1 :- node(Package).

% if a package is in the graph, solver must choose exactly one version
% out of that package's possible versions
1 { version(V) : possible_version(Package, V) } 1 :- node(Package).

13
LLNL-PRES-826942

ASP searches for stable models of the input program

§ Stable models are also called answer sets

§ A stable model (loosely) is a set of true atoms that can be
deduced from the inputs, where every rule is idempotent.
— Similar to fixpoints
— Put more simply: a set of atoms where all your rules are true!

§ Unlike Prolog:
— Stable models contain everything that can be derived (vs. just querying values)
— ASP is guaranteed to complete!

14
LLNL-PRES-826942

§ Used Clingo, the Potassco grounder/solver package

§ ASP program has 2 parts:
1. Large list of facts generated from package recipes (problem instance)

• 60k+ facts is typical – includes dependencies, op2ons, etc.
2. Small logic program (~700 lines of ASP code)

§ Algorithm (the part we write) is conceptually simpler:
— Generate facts for all possible dependencies
— Send facts and our logic program to the solver
— Rebuild a DAG from the results

Spack’s concretizer is now implemented in ASP

Some facts for HDF5 package

15
LLNL-PRES-826942

ASP makes it easy to put the logic in one place, declara/vely

Define the space:
each package must be assigned
exactly one version.

Disallow conflicted versions

Minimize the total of all version
weights

16
LLNL-PRES-826942

§ Every node in the DAG has a compiler and a target architecture
— Some compilers don’t support generating code for some targets
— But we want to pick the best target possible for each compiler

§ Previously this required some complicated logic mixed in with the rest of the solve

Previously complicated ABI/target logic became very simple

Each node has 1 target assigned

Disallow cases where the compiler
doesn’t support the target.

Minimize the total weight of
all targets

17
LLNL-PRES-826942

§ Every condi/on in the solve gets an id
— Triggers (requirements) and imposed constraints are associated with the condi2on id.
— Different types of condi2ons have different seman2cs (dependencies, conflicts, etc.)

Encoding generalized conditions was more tricky

"If cmake is at version 3.15 or higher, and NOT using vendored libraries (ownlibs),
it depends on libarchive version 3.3.3 or higher"

ASP Facts

Spack Package DSL

18
LLNL-PRES-826942

§ Condi.onal Rules allow us to build new rules from input facts
— Colon here says "if this requirement is true, then put it in the rule body"

§ A condi/on that holds imposes its constraints (unless canceled w/do_not_impose)

§ Impose all constraints if impose(ID) is true.

Code to trigger and impose general condi/ons
is surprisingly simple (to read)

Same rule,
different arity

19
LLNL-PRES-826942

§ Tend to be a lot of valid solutions in Spack
— Many versions can satisfy given constraints
— Most packages have loose constraints

§ Choosing configurations that are “intuitive”
to users can be difficult
— Build specification is more of an art than a science

§ We’ve added 15 ”base” optimization criteria
to our solver

§ Currently, criteria for roots are prioritized and
other nodes are aggregated.
— Would really like DAG precedence
— Has proven hard to implement efficiently so far

but we have ideas

We use op/miza/on to choose the “best” of all valid solu/ons

20
LLNL-PRES-826942

§ Hash matches are very
sensitive to small changes

§ In many cases, a satisfying
cached or already installed
spec can be missed

§ Nix, Spack, Guix, Conan,
and others reuse this way

Many packaging systems reuse builds via metadata hashes

mpileaks

mpi

callpath dyninst

libdwarf

libelf

Package cache

6zvh4ueem6f5yrcfugh67k2hrtxbgbcs

74mwnxgn6nujehpyyalhwizwojwn5zga

4xxvh5ldm7gm32ngtixcm2odaer3cvvb

k2yumgxwq6ijubivfpbjpmrrbzyqcoot

qo2af23r2npatxdtna3fmwkeennywixp

cwx4qwk4bkamf4gjrglmxfu3bhasyt74

1. Resolve metadata

2. Create per-node hashes

3. Query for exact hash match

??

21
LLNL-PRES-826942

We can be more aggressive about reusing packages.

• First, we need to tell the solver about all the installed packages!
• Add constraints for all installed packages, with their hash as the associated ID:

22
LLNL-PRES-826942

Telling the solver to minimize builds is surprisingly simple:
it's just the impose half of a generalized condi/on.

1. Allow the solver to choose a hash for any package:

2. Choosing a hash means we impose its constraints:

3. Define a build as something without a hash:

4. Minimize builds!

23
LLNL-PRES-826942

With and without reuse optimization

Pure hash-based reuse: all misses With reuse: 16 packages were actually acceptable

Note the bifurcated
optimization criteria

24
LLNL-PRES-826942

§ If we just minimize builds, we get strange behavior when we have to build things new
— E.g.: Cmake depends on openssl for https
— Minimizing builds will toggle this feature off, but most users wan a functional Cmake

§ We made the following change:
— Prioritize minimizing builds, unless we have to build
— Prioritize defaults for specs we have to build

§ Rationale:
— If you’ve installed some version of something, you’re probably ok with that version
— You can use –fresh to get a completely up-to-date install

§ To get this to work:
— All criteria must be formulated as minimizations
— No built configuration can be “better” than a reused configuration

We had to take some special steps to make the builds less weird

25
LLNL-PRES-826942

§ Cumulative distribution
of setup and solve times

§ Hypothesis: we don’t
see big combinatorial
blow-up b/c we're strict
about dependency
hashes

§ Next: try mixed ABI, but
prefer "pure" source-
built dependencies

So far, it looks like we can handle very large problem sizes
with the reusing solver

Most of the .me is spent in setup
(reading data in Python – can be sped up w/caching)

Even with 63k packages in a repo,
nearly all package solves take < 10 sec

26
LLNL-PRES-826942

We can explore the build space and find configurations that are likely to work
— We run rouhly 40k builds in CI each week
— Fuzz the CI builds to build a model like the one above

Next steps:
— Use these weights with an optimization function to guide the solver
— Investigate online training, update strategies to keep model current for low CPU cost
— Investigate transfer learning for porting from one system to another

Future work: integrate pairwise success likelihood into the
solver, to guide it to high-likelihood solutions.

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore Na=onal Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any informa=on, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily cons=tute or
imply its endorsement, recommenda=on, or favoring by the United States government or Lawrence Livermore Na=onal Security, LLC.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore Na=onal Security, LLC, and shall not be used for adver=sing or product endorsement purposes.

