
Preparing for Performance Analysis at Exascale

Jonathon Anderson, Yumeng Liu, John Mellor-Crummey

Rice University

STW 2022

June 20, 2022

Performance Analysis in the Exascale Era

• Forthcoming exascale systems pose new challenges
– Loss may only appear at the full scale of the machine, 10000s of compute nodes

• Performance must be gathered from every application thread: very large data
– Rich performance data must be gathered for a complete picture, over 130 GPU metrics

• Some metrics are only present for GPU code regions: very sparse data
• Performance tools must handle these issues…

– …But still provide detailed, useful analysis results!

2

Outline

• HPCToolkit at a glance
• Exploiting natural sparsity in performance data
• Streaming aggregation for highly-parallel processing of performance data
• Evaluation
• Conclusions
• Ongoing work: exploiting distributed object storage

3

 3

HPCToolkit: Fine-grain Measurement and Attribution within Kernels

Experiments on Summit (NVIDIA GPUs)

9.4% GPU stalls
outside the loop

mostly memory
stalls

Improvement:

pass udata components as scalars
https://github.com/AMReX-Combustion/PelePhysics/pull/192

4% speedup on PeleC PMF drm19 test case

Cause:
passed udata structure pointer to lambda capture

CPU
context

GPU
context

HPCToolkit

5

Our Work

Performance Data is Sparse

• Threads have different roles, zeros for contexts only in other threads
– MPI helper threads, OpenMP worker threads, GPU streams…

• Metric costs accumulate in expensive leaf functions
– Distant callers often have no exclusive metrics

• Many metrics apply only to certain instructions or code regions
– TLB miss only on memory access; GPU cycles only in GPU code

• Some metrics only apply to very specific contexts
– Kernel launch parameters only for GPU kernels, data motion volume for GPU copy

• All these factors contribute to sparsity!

6

For each value we record, we need to know:

• which metric

• which calling context

• which thread

 ≈ 3-dimensional tensor

Performance data

7

Sparsity in Practice

8

In our experiments, at most:
- 2.3% of the contexts have

metric values
- 1.4% of the values for contexts

are non-zero

CPU

CPU

GPU

GPU

With 7 CPU metrics:
- 23% of the contexts have

metric values
- 21% of the values for

contexts are non-zero

With GPU metrics:
- 16% of the contexts have

metric values
- 2% of the values for

contexts are non-zero

Measurement data

Analysis results

Exploiting Sparsity in Measurement Data

● Each value 𝑣 measured for a metric 𝑚 in a calling context 𝑐
○ (𝑚, 𝑣) vector lists non-zero metric values
○ (𝑐, 𝑖) vector maps contexts to contiguous ranges of the (𝑚, 𝑣) vector

● Exploit sparsity in both metric and context dimensions to reduce space
● Ensure logarithmic access time to values

9

Exploiting Sparsity in Analysis Results

10

Profile-Major-Sparse (PMS):
 data for each profile is contiguous

Context-Major-Sparse (CMS):
 data for each context is contiguous

Streaming Aggregation: 3 Classes of Operations

• Data dependency based on number

– In order: class 1, then 2, then 3

• Class 2 operations run in parallel

– Independent, per-profile analysis

– e.g. calculating inclusive cost (per-thread)

– Read inputs and write outputs directly

– No significant synchronization

• “Streaming” approach reduces memory

– Only in-flight profiles in memory!

11

Streaming Aggregation: 3 Classes of Operations

• Class 1 operations as needed by Class 2
• Associative, commutative, idempotent

– e.g. correlate calling contexts across threads
• Class 3 ops aggregate Class 2 results

• Associative and commutative
– e.g. summary statistics for entire execution

• Update concurrent data structures
• Streaming parallel approach to “aggregation”

• No defined order, no phases or barriers
• Fine-grained, data-centric synchronization
• Outperforms classic reduction approach!

12

Lessons from a Proxy Application

S.A. + RW-locks: 70ms

S.A. + Intel’s TBB: 710ms

OpenMP Reduction: 398ms

Reduction Tree: 261ms

● Reduction phase causes large serialization: phases are costly
● Lots of allocations also takes time: high footprint costly
● Choice data structure affects performance: choose/tune wisely

13

Extension to Multiple Nodes

• Hybrid approach

– MPI across nodes

– Streaming Aggregation within

• Class 1/3 ops use reductions across nodes

– Shared-memory parallelism within a node

• Class 2 ops distributed across nodes

– Independent, no communication needed

• All nodes perform I/O individually

– Exploit distributed file system

14

Dense Parallelism from Streaming Aggregation

15

Class 1
+ reduction Class 2/3 Class 3

reduction Transpose

Performance Improvements Analyzing GPU Measurements
• Post-processing performance from PeleC

– 512+512 or 2K+2K (threads + GPUs)

– Analysis uses 63 threads/node

• 30-80x performance improvement
• Smaller memory footprint is crucial

– Original hpcprof exceeded 256GB/node

– Required 16x total compute resources

• Minimal resources vs. application
– Ran PeleC on 128 and 512 nodes

• Up to ⅓ of Perlmutter

– Analyzed measurements on 1 and 8 nodes

• Results in 1-2 mins

16

See ICS paper for CPU-only results for AMG

Storage Improvements

• Performance data from real-world apps

– Measurements (In) and results (Out)

• Significant space reductions
– Up to 10x compression in measurements

– Up to 1254x compression in results

• Results in GBs… not TBs!

17

Conclusions

• “Less is more”: Efficient use of compute resources is key

– Exploit sparsity to reduce storage and I/O

– Exploit multithreading to efficiently use each node’s cores and threads

– Exploit distributed memory parallelism for scale

• Novel sparse formats for performance measurements and analysis results

– Up to 1254x compression in analysis results for our experiments

• Novel highly-parallel streaming aggregation approach to performance analysis

– Results for large-scale executions in minutes!

• End result: better prepared for performance analysis at exascale!

• Improvements actively being integrated into HPCToolkit

– Will become widely available in a future release

18

Ongoing Work: Accelerating I/O
Problems

● Metadata server is slow:
○ Our approach of recording 2 files per thread may be costly

● Unnecessary overhead for maintaining page cache consistency between multiple processes
on different nodes

○ Our writes don’t overlap

Approach

● When available, exploit object-based solid state storage for ultimate performance

19

Ongoing work: Distributed Asynchronous Object Storage (DAOS)
● Designed for massively distributed NVM
● Affordable, fast, large-capacity PM

■ SCM (store metadata, latency-sensitive small data)
■ NVMe SSDs (bulk data)

Properties

● High throughput and IOPS at arbitrary alignment and size
● Fine-grained I/O operations with true zero-copy I/O to SCM
● Non-blocking data and metadata operations to allow I/O and computation to overlap
● Scalable distributed transactions with guaranteed data consistency and automated recovery

20

An I/O abstraction layer for HPCToolkit
• Freedom to choose any I/O option (DAOS, POSIX, Lustre …) for any file

– Example:
• hpcprof -o daos://<POOL>/<CONT>/database-dir measurement-dir
• We use DAOS for database and use POSIX for measurement files at the same time

• Easy integration of other I/O options in the future
– Example: HPE Rabbit Near Node Storage (Livermore’s El Capitan), Lustre ...

• Details of I/O are invisible to other parts of the software
– Example: just call io->write(...) without concern for underlying I/O implementations

21

HPCToolkit Funding Acknowledgments

• Exascale Computing Project 17-SC-20-SC

• Lawrence Livermore National Laboratory Subcontract B645220

• Argonne National Laboratory Subcontract 9F-60073

• Advanced Micro Devices

• Intel Corporation

• TotalEnergies EP Research & Technology USA, LLC.

22

Backup Slides

23

Adapting Algorithms to New Constraints

24

• E.g. GPU calling context reconstruction
– GPU PC sampling is always flat
– Reconstruct calling context based on

static CFG from binary analysis
• 4-step algorithm:

– Attribute flat samples to call graph
– Fixup missing edge weights
– Convert to DAG by SCC
– Expand DAG into calling context tree

• Problem: does not obey S.A. constraints!
– (4) must be class 1 for final CCT…
– …but (1) must be class 2 for values!

Source: Measurement and analysis of GPU-accelerated applications with HPCToolkit, https://doi.org/10.1016/j.parco.2021.102837

Adapting Algorithms to New Constraints

• Generate full possible CCT (Class 1)
– Iterate reverse static call paths
– Create full context for each path

• Reattribute metric values (Class 2)
– Attribute flat samples to heads
– Distribute among branching paths
– Assign path values to CCT

• Reconstruction mixed with normal ops
– Generate when a context in need

of reconstruction is parsed
– Reattribute just before inclusive

metric propagation

25

0

1

2

6

1

2

3

8

0

1

Class 2
Class 11

2

3

2

6

DAOS Integration Experiences - I
No matching DAOS function for every POSIX function

- fread, fwrite, fseek …
- fread: We reworked our code to avoid it by using read_at
- fwrite: DAOS only has write_at, manage our own buffer and cursor
- fseek: We reworked our code to avoid it by using read_at and write_at

- write
- Multiple processes append to the same log file (debug info for developers)
- With write_at, we need to share a buffer or a cursor between processes
- We reworked so that each process creates its own log file

- C++ filesystem abstractions (directory_iterator, exists, remove_all …)
- We needed to reimplement these abstractions using our I/O abstraction layer

26

DAOS Integration Experiences - II
- Extra initialization and finalization steps

- Each process initializes its own DAOS pool and container handles
- We set up the output directory and begin recording trace data BEFORE MPI initialization

- Need to manage file system accesses carefully
- Before: use POSIX anywhere without any direct coordination
- Now: pass around I/O abstractions to access the correct file system

- Caching semantics
- Objects created were only visible through command line after cache refreshed
- Using --disable-caching can help, but may hurt performance

27

