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Performance Analysis in the Exascale Era

* Forthcoming exascale systems pose new challenges
— Loss may only appear at the full scale of the machine, 10000s of compute nodes
 Performance must be gathered from every application thread: very large data
— Rich performance data must be gathered for a complete picture, over 130 GPU metrics
* Some metrics are only present for GPU code regions: very sparse data
* Performance tools must handle these issues...
— ...But still provide detailed, useful analysis results!




Outline

« HPCToolkit at a glance

* Exploiting natural sparsity in performance data

» Streaming aggregation for highly-parallel processing of performance data
e Evaluation

* Conclusions

* Ongoing work: exploiting distributed object storage




HPCToolkit: Fine-grain Measurement and Attribution within Kernels
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HPCToolkit
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Performance Data is Sparse

 Threads have different roles, zeros for contexts only in other threads
— MPI helper threads, OpenMP worker threads, GPU streams...
* Metric costs accumulate in expensive leaf functions
— Distant callers often have no exclusive metrics
* Many metrics apply only to certain instructions or code regions
— TLB miss only on memory access; GPU cycles only in GPU code
e Some metrics only apply to very specific contexts
— Kernel launch parameters only for GPU kernels, data motion volume for GPU copy
e All these factors contribute to sparsity!




Performance data

For each value we record, we need to know:

« which metric
« which calling context
« which thread

=~ 3-dimensional tensor

Context ¢

Metric m




Sparsity in Practice

Measurement data

With 7 CPU metrics:
- 23% of the contexts have
metric values
- 21% of the values for
contexts are non-zero

With GPU metrics:
- 16% of the contexts have
metric values
- 2% of the values for
contexts are non-zero

Analysis results

Density (%)
Application Contexts Metrics
Measurement data (In)

CPU AMG 81? 69.1 100.0
| AMGS8KT [227 20.7
LAMMPS 1K  17.7 1.8

cPu | PeleC1K | 15.8 2.0
Analysis results (Out)

. AMG 8K 0.301 0.182
CPU AMGsKT  0.059 0.017
GPU LAMMPS 1K 2.360 1.390

| PeleC1K 0599  0.635
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In our experiments, at most:
- 2.3% of the contexts have
metric values
- 1.4% of the values for contexts
are non-zero




Exploiting Sparsity in Measurement Data

Metric m
o[0 5 0
§ 2 0 6
g 0O 0 O
Olo 3 0

o o o o

(m,0): [ (1,5) (0,2) (2,6) (1,3) ]

[
(i): [ (0,0 (L1 (33) (T.4) ]

e [Each value v measured for a metric m in a calling context ¢

o (m, v) vector lists non-zero metric values
o (c, i) vector maps contexts to contiguous ranges of the (m, v) vector
e Exploit sparsity in both metric and context dimensions to reduce space

e Ensure logarithmic access time to values




Exploiting Sparsity in Analysis Results

of (mo):[ ] S o[ ]
£ 1 £ ...
St ed:[ ] sf(mi:[ ]
[
/ /
p:[0...] c:[0...]

Context-Major-Sparse (CMS):

Profile-Major-Sparse (PMS):
data for each context is contiguous

data for each profile is contiguous




Streaming Aggregation: 3 Classes of Operations

* Data dependency based on number

— Inorder: class 1, then 2, then 3

Input Profiles Per-Profile (Class 2) Output

* Class 2 operations run in parallel P
— Independent, per-profile analysis O ...... » 2 - 9 _ e >

— e.g. calculating inclusive cost (per-thread) .

- Read inputs and write outputs directly D """"" > L2 [ L2 i
— No significant synchronization O ) g, L - [ O —— >

e “Streaming” approach reduces memory |
—  Only in-flight profiles in memory! O """""""" ’ 2 - L2 ’

—




Streaming Aggregation: 3 Classes of Operations

» Class 1 operations as needed by Class 2
» Associative, commutative, idempotent

_ Input Profiles Per-Profile (Class 2) Output
- e.g. correlate calling contexts across threads
)
» Class 3 ops aggregate Class 2 results D """" J o 1L 2 | T3l o] )
» Associative and commutative - ————— m—— o
- e.g. summary statistics for entire execution O ~~~~~~~~~ "1l 2 R3p 2 (oo >
* Update concurrent data structures r - -
. “ . " O ...... > 2 | 1 - 2 ................. >
» Streaming parallel approach to “aggregation +

 No defined order, no phases or barriers O AAAAAAAAAAAA o5 9 LTiH 2 [Hsl-- n
» Fine-grained, data-centric synchronization R S

» Outperforms classic reduction approach!

Y Y Y A Y Y A

Concurrent Data Structures —l

[Correlated/Aggregated (Class 1/3) Output]




Lessons from a Proxy Application

Main vi

nge: [656ms, 2,455ms] Rank Range: [Thread 0, Thread 31] Cross Hair: (657ms, Thread 31)

[

OpenMP Reduction: 398ms

|

Il
1l

|
il
[

Reduction Tree: 261ms
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Reduction phase causes large serialization: phases are costly
Lots of allocations also takes time: high footprint costly

— i _|

Choice data structure affects performance: choose/tune wisely

S.A. + RW-locks: 70ms

23s




Extension to Multiple Nodes

*  Hybrid approach
—  MPI across nodes
—  Streaming Aggregation within
* Class 1/3 ops use reductions across nodes

—  Shared-memory parallelism within a node

* Class 2 ops distributed across nodes

7

— Independent, no communication needed F Clasg Analysis Results
* All nodes perform I/O individually o .
— it distri i |1 |er3] |2/3] - |1 |er3] |2/3] -
Exploit distributed file system aal || |y oal | V| |
2/3 ﬂ ﬂ
?

( Per-Profile (Class 2) Output

[Correlated/Aggregated (Class 1/3) Output]




Dense Parallelism from Streaming Aggregation

Main view

Time Rar 1s] Rank Rar

Class 1 - Class 2/3 .} Classs - 2t] Transpose

+reduction | | i it = &k reduction
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Performance Improvements Analyzing GPU Measurements

Post-processing performance from PeleC

—  512+512 or 2K+2K (threads + GPUs) PeleC 1K, Perlmutter
— Analysis uses 63 threads/node 5 1008 4;; B
* 30-80x performance improvement ;ﬁ '
 Smaller memory footprint is crucial E 504 S 20187 -
— Original hpcprof exceeded 256GB/node g .
—  Required 16x total compute resources I 71.5 JJJ‘ ]
e Minimal resources vs. application e
— Ran PeleC on 128 and 512 nodes g 40324 -
* Upto Vs of Perimutter ;‘3 i
= | 2,515.9%
— Analyzed measurements on 1 and 8 nodes é S04 i
* Results in 1-2 mins g . L
Biinit] AT T e
0 1,200 2,400 3,600 4,800

See ICS paper for CPU-only results for AMG

Time (seconds)
| #Increased node count by 16X and used 4 ranks/node to avoid out-of-memory errors. |

E\Q\C\\)P i = HPCToolkit-SA =, HPCToolkit

PROJECT




Storage Improvements

e  Performance data from real-world apps

— Measurements (In) and results (Out)

 Significant space reductions Tool Size (GiB)
- Up to 10x compression in measurements AMG 65K AMG 262K
—  Up to 1254x compression in results In Out In Out

o Results in GBs... not TBs!

HPCToolkit 5.88 195 36.9 [1250
HPCToolkit-SA 6.14 5.55 38.2 [36.6

PeleC 1K PeleC 4K
In Out In Out

HPCToolkit 21.2 4800 50.7 14300
HPCToolkit-SA 2.85 5.27 4.8 |114




Conclusions

- “Less is more”: Efficient use of compute resources is key
- Exploit sparsity to reduce storage and I/O
- Exploit multithreading to efficiently use each node’s cores and threads
- Exploit distributed memory parallelism for scale
« Novel sparse formats for performance measurements and analysis results
- Up to 1254x compression in analysis results for our experiments
« Novel highly-parallel streaming aggregation approach to performance analysis
- Results for large-scale executions in minutes!
- End result: better prepared for performance analysis at exascale!
« Improvements actively being integrated into HPCToolkit

- Will become widely available in a future release




Ongoing Work: Accelerating 1/0
Problems

e Metadata server is slow:
o  Our approach of recording 2 files per thread may be costly
e Unnecessary overhead for maintaining page cache consistency between multiple processes
on different nodes
o  Our writes don’t overlap

Approach

e \When available, exploit object-based solid state storage for ultimate performance




Ongoing work: Distributed Asynchronous Object Storage (DAOS)

e Designed for massively distributed NVM

e Affordable, fast, large-capacity PM
m SCM (store metadata, latency-sensitive small data)
m  NVMe SSDs (bulk data)

Properties

High throughput and IOPS at arbitrary alignment and size

Fine-grained |/O operations with true zero-copy I/0 to SCM

Non-blocking data and metadata operations to allow I/O and computation to overlap
Scalable distributed transactions with guaranteed data consistency and automated recovery




An 1/O abstraction layer for HPCToolkit

» Freedom to choose any I/O option (DAOS, POSIX, Lustre ...) for any file
— Example:
* hpcprof -o daos://<POOL>/<CONT>/database-dir measurement-dir
» We use DAOS for database and use POSIX for measurement files at the same time
» Easy integration of other I/O options in the future
— Example: HPE Rabbit Near Node Storage (Livermore’s El Capitan), Lustre ...
 Details of I/O are invisible to other parts of the software
— Example: just call io->write (...) without concern for underlying I/O implementations
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Adapting Algorithms to New Constraints

 E.g. GPU calling context reconstruction
— GPU PC sampling is always flat

— Reconstruct calling context based on \@
static CFG from binary analysis ;|
« 4-step algorithm: °

— Attribute flat samples to call graph 2
—  Fixup missing edge weights >

—  Convert to DAG by SCC <
— Expand DAG into calling context tree
* Problem: does not obey S.A. constraints!

1 1

— (4) must be class 1 for final CCT...
— ...but (1) must be class 2 for values!

e

e

\ ) exescae
E\(C\)P COMRLTING Source: Measurement and analysis of GPU-accelerated applications with HPCToolkit, https://doi.org/10.1016/j.parco.2021.102837




Adapting Algorithms to New Constraints

* Generate full possible CCT (Class 1)
— lterate reverse static call paths
— Create full context for each path
e Reattribute metric values (Class 2)
— Attribute flat samples to heads
— Distribute among branching paths
— Assign path values to CCT
* Reconstruction mixed with normal ops
— Generate when a context in need
of reconstruction is parsed
— Reattribute just before inclusive
metric propagation

Class 1
Class 2




DAOS Integration Experiences - |
No matching DAOS function for every POSIX function

- fread, fwrite, fseek...
- fread: We reworked our code to avoid it by using read at
- fwrite: DAOS only has write at, manage our own buffer and cursor
- fseek: We reworked our code to avoid it by using read at and write at
- write
- Multiple processes append to the same log file (debug info for developers)
- Withwrite at, we need to share a buffer or a cursor between processes
- We reworked so that each process creates its own log file
- C++ filesystem abstractions (directory iterator, exists, remove all ...)
- We needed to reimplement these abstractions using our I/O abstraction layer




DAQOS Integration Experiences - |l

- Extra initialization and finalization steps

- Each process initializes its own DAOS pool and container handles

- We set up the output directory and begin recording trace data BEFORE MPI initialization
- Need to manage file system accesses carefully

- Before: use POSIX anywhere without any direct coordination

- Now: pass around I/O abstractions to access the correct file system
- Caching semantics

- Objects created were only visible through command line after cache refreshed

- Using --disable-caching can help, but may hurt performance




