Preparing for Performance Analysis at Exascale

—
\\ EXASEREE
) COMPUTING
\ PRENECE
-

Jonathon Anderson, Yumeng Liu, John Mellor-Crummey

Rice University

STW 2022
June 20, 2022

VA BRICE (wscons k\

Office of
Science

Ve "SR U-S. DEPARTMENT OF
ENERGY

Performance Analysis in the Exascale Era

* Forthcoming exascale systems pose new challenges
— Loss may only appear at the full scale of the machine, 10000s of compute nodes
 Performance must be gathered from every application thread: very large data
— Rich performance data must be gathered for a complete picture, over 130 GPU metrics
* Some metrics are only present for GPU code regions: very sparse data
* Performance tools must handle these issues...
— ...But still provide detailed, useful analysis results!

Outline

« HPCToolkit at a glance

* Exploiting natural sparsity in performance data

» Streaming aggregation for highly-parallel processing of performance data
e Evaluation

* Conclusions

* Ongoing work: exploiting distributed object storage

HPCToolkit: Fine-grain Measurement and Attribution within Kernels

[X X) hpcviewer

[F¥ Profile: PeleC3d.gnu.TPROF.CUDA ex

reaclor.cpp 8% | Melric properties

438 UserData udata = static_cast<ARKODEUserDatax>(user_data);

439 udata->dt_save z t; Cause-

440 .

441 #ifdef AMREX_USE_GPU .

442 const auto ec = amrex::Gpu::ExecutionConfig(udata->ncells_d);

N e g ; passed udata structure pointer to lambda capture
444 udata->nbBlocks, udata->nbThreads, ec.sharedMem, udata->stream>>>(

445 [=] AMREX_GPU_DEVICE() noexcept {
for (int icell = blockDim.x * blockIdx.x + threadIdx.x,

stride = blockDim.x * gridDim.x; -
icell < udata->ncells_d; icell += stride) { Improvement'
fKernelSpec(
icell, udata->dt_save, udata—>ireactor_type, yvec_d, ydot_d,
udata->rhoe_init_d, udata->rhoesrc_ext_d, udata->rYsrc_d); pass udata Components as Scalars

¥
Banetse https://github.com/AMReX-Combustion/PelePhysics/pull/192

455 for (int icell = @; icell < udata->ncells_d; icell++) {
ASA fKarnalCnarl

e L T 1 4% speedup on PeleC PMF drm19 test case

o A A
[GNSI001(E |GNSSTLANKIOOI() — |ONSSTLANYI00) & |GNSSTLOUEM.00/() __ GINSSTLOMEW001 & |
4 loop at AMReX_Amr.cpp: 2061 1.24e+13 88.6% 1.05e+13 88.7% 5.58e+12 89.3%
4 B»2062: amrex::Amr::timeStep(int, double, int, int, double) 1.24e+13 88.6% 1.05e+13 88.7% 5.58e+12 89.3%
4 B»2015: PeleC::advance(double, double, int, int) CPU 1.24e+13 88.5% 1.05e+13 88.6% 5.57e+12 89.2%
4 B»36: PeleC::do_sdc_advance(double, double, int, int) 1.24e+13 88.5% 1.05e+13 88.6% 5.57e+12 89.2%
4 loop at Advance.cpp: 302 1.24e+13 88.4% 1.05e+13 88.5% 5.57e+12 89.1%
4 B 308: PeleC::do_sdc_iteration(double, double, int, int, int, int) context 1.24e+13 88.4% 1.05e+13 88.5% 5.57e+12 89.1%
4 B»561: PeleC::react_state(double, double, bool, amrex::MultiFab*) 9.61le+12 68.5% 8.29%e+12 70.0% 4.17e+12 66.8%
4 |oop at React.cpp: 109 9.43e+12 67.2% 8.14e+12 68.7% 4.06e+12 65.0%
4 B»210: react(amrex::Box const&, amrex::Array4<double> const&, amrex::Array4<double> cons... 9.39%e+12 66.9% 8.10e+12 68.4% 4,03e+12 64.5%
4 B 234: arkEvolve [libsundials_arkode.s0.4.7.0] 9.28e+12 66.2% 8.00e+12 67.6% 3.94e+12 63.1%
4 B erkStep_TakeStep [libsundials_arkode.50.4.7.0] 7.16e+12 51.1% 6.19e+12 52.3% 3.05e+12 48.9%
4 B cF_RHS(double, _generic_N_Vector _generic_N_Vector* void*) 6.27e+12 44.7% 5.49e+12 46.3% 2.48e+12 39.7%
4 E»443: [1] amrex::launch_global<_ nv_dl wrapper_t<_ nv_dl_tag<int (*)(double, _generic_N... 6.27e+12 44.7% 5.49e+12 46.3% 2.48e+12 39.7%
4 B$12: (1] _wrapper__device_stub_launch_global<__nv_dl_wrapper_t<_nv_dI_tag<int (*)(do... 6.27e+12 44.7% 5.49e+12 46.3% 2.48e+12 39.7%
4 B 26: [|] _device_stub__ZNSamrex13launch_globallZ6cF_RHSdP17_generic_N_VectorS2... 6.27e+12 44.7% 5.49e+12 46.3% 2.48e+12 39.7%
4 8 24: [cudaLaunchKernel<char> 6.27e+12 44.7% 5.49e+12 46.3% 9.4% GPU stalls 2.48e+12 39.7% Mostly memory
4 B»211:_cudaLaunchKernel [PeleC3d.gnu.TPROF.CUDA.ex] 6.27e+12 44.7% 5.49e+12 46.3%| outside the loop 2.48e+12 39.7% stalls

6.27e+12 44.7% 5.49e+12 46.3% 2.48e+12 39.7%
4 B amrex::launch_global<cF_RHS(double, _generic_N_Vector*, _generic_N_Vector*, v.. 6.27e+12 44.7% 1.75e+18 0.1% 5.49e+12 46.3% 1.70e+10 2.1% 2.48e+12 39.7%

G P U 4 Bp12: [I] cF_RHS(double, generic_N_Vector*, _generic_N_Vector*, void*)::{lambda... 6.25e+12 44.6% 1.17e+12 8.3% 5.47e+12 46.2% 1.16e+12 9.8% 2.48e+12 39.7% 1.14e+12 18.2%

.l. N » loop at reactor.cpp: 446 5.14e+12 36.6% 5.35e+10 0. 495I 4 - 462e+lgﬁ§9vs£1 b NN 3.29e+10 0.5%

icontex
conte"" AMReX_Gpul.aunchGlobal.H: 12 1.75e+10 0.1% 1.75e+10 0.1% 1.?UE+10 0.1% 1.70e+10 02.1%

E\(\:[E\\;P Experiments on Summit (NVIDIA GPUs)

HPCToolkit

ECP

Source
Files

Compile & Link

Our Work

hpcviewer

Optimized
Binary

Present trace view and
profile view

hpcrun

Profile execution on
CPUs and GPUs

Y
[GPU Binaries]

.

Profile 1
Files

Trace ||
Files
e

hpcstruct

Analyze CPU/GPU
program structure

hpcprof/hpeprof-mpi

EXASCALE
COMPUTING
PROJECT

Interpret profile
Correlate w/ source

Program |
Structure

Performance Data is Sparse

 Threads have different roles, zeros for contexts only in other threads
— MPI helper threads, OpenMP worker threads, GPU streams...
* Metric costs accumulate in expensive leaf functions
— Distant callers often have no exclusive metrics
* Many metrics apply only to certain instructions or code regions
— TLB miss only on memory access; GPU cycles only in GPU code
e Some metrics only apply to very specific contexts
— Kernel launch parameters only for GPU kernels, data motion volume for GPU copy
e All these factors contribute to sparsity!

Performance data

For each value we record, we need to know:

« which metric
« which calling context
« which thread

=~ 3-dimensional tensor

Context ¢

Metric m

Sparsity in Practice

Measurement data

With 7 CPU metrics:
- 23% of the contexts have
metric values
- 21% of the values for
contexts are non-zero

With GPU metrics:
- 16% of the contexts have
metric values
- 2% of the values for
contexts are non-zero

Analysis results

Density (%)
Application Contexts Metrics
Measurement data (In)

CPU AMG 81? 69.1 100.0
| AMGS8KT [227 20.7
LAMMPS 1K 17.7 1.8

cPu | PeleC1K | 15.8 2.0
Analysis results (Out)

. AMG 8K 0.301 0.182
CPU AMGsKT 0.059 0.017
GPU LAMMPS 1K 2.360 1.390

| PeleC1K 0599 0.635

CALE
UUUUU
ECT

In our experiments, at most:
- 2.3% of the contexts have
metric values
- 1.4% of the values for contexts
are non-zero

Exploiting Sparsity in Measurement Data

Metric m
o[0 5 0
§ 2 0 6
g 0O 0 O
Olo 3 0

o o o o

(m,0): [(1,5) (0,2) (2,6) (1,3)]

[
(i): [(0,0 (L1 (33) (T.4)]

e [Each value v measured for a metric m in a calling context ¢

o (m, v) vector lists non-zero metric values
o (c, i) vector maps contexts to contiguous ranges of the (m, v) vector
e Exploit sparsity in both metric and context dimensions to reduce space

e Ensure logarithmic access time to values

Exploiting Sparsity in Analysis Results

of (mo):[] S o[]
£ 1 £ ...
St ed:[] sf(mi:[]
[
/ /
p:[0...] c:[0...]

Context-Major-Sparse (CMS):

Profile-Major-Sparse (PMS):
data for each context is contiguous

data for each profile is contiguous

Streaming Aggregation: 3 Classes of Operations

* Data dependency based on number

— Inorder: class 1, then 2, then 3

Input Profiles Per-Profile (Class 2) Output

* Class 2 operations run in parallel P
— Independent, per-profile analysis O » 2 - 9 _ e >

— e.g. calculating inclusive cost (per-thread) .

- Read inputs and write outputs directly D """"" > L2 [L2 i
— No significant synchronization O) g, L - [O —— >

e “Streaming” approach reduces memory |
— Only in-flight profiles in memory! O """""""" ’ 2 - L2 ’

—

Streaming Aggregation: 3 Classes of Operations

» Class 1 operations as needed by Class 2
» Associative, commutative, idempotent

_ Input Profiles Per-Profile (Class 2) Output
- e.g. correlate calling contexts across threads
)
» Class 3 ops aggregate Class 2 results D """" J o 1L 2 | T3l o])
» Associative and commutative - ————— m—— o
- e.g. summary statistics for entire execution O ~~~~~~~~~ "1l 2 R3p 2 (oo >
* Update concurrent data structures r - -
. “ . " O > 2 | 1 - 2 >
» Streaming parallel approach to “aggregation +

 No defined order, no phases or barriers O AAAAAAAAAAAA o5 9 LTiH 2 [Hsl-- n
» Fine-grained, data-centric synchronization R S

» Outperforms classic reduction approach!

Y Y Y A Y Y A

Concurrent Data Structures —l

[Correlated/Aggregated (Class 1/3) Output]

Lessons from a Proxy Application

Main vi

nge: [656ms, 2,455ms] Rank Range: [Thread 0, Thread 31] Cross Hair: (657ms, Thread 31)

[

OpenMP Reduction: 398ms

|

Il
1l

|
il
[

Reduction Tree: 261ms

(LTI
T AT AL
Wi

Reduction phase causes large serialization: phases are costly
Lots of allocations also takes time: high footprint costly

— i _|

Choice data structure affects performance: choose/tune wisely

S.A. + RW-locks: 70ms

23s

Extension to Multiple Nodes

* Hybrid approach
— MPI across nodes
— Streaming Aggregation within
* Class 1/3 ops use reductions across nodes

— Shared-memory parallelism within a node

* Class 2 ops distributed across nodes

7

— Independent, no communication needed F Clasg Analysis Results
* All nodes perform I/O individually o .
— it distri i |1 |er3] |2/3] - |1 |er3] |2/3] -
Exploit distributed file system aal || |y oal | V| |
2/3 ﬂ ﬂ
?

(Per-Profile (Class 2) Output

[Correlated/Aggregated (Class 1/3) Output]

Dense Parallelism from Streaming Aggregation

Main view

Time Rar 1s] Rank Rar

Class 1 - Class 2/3 .} Classs - 2t] Transpose

+reduction | | i it = &k reduction

BENFL

o
\\ EXASCALE
() COMPUTING
\ PROJECT
=y

Performance Improvements Analyzing GPU Measurements

Post-processing performance from PeleC

— 512+512 or 2K+2K (threads + GPUs) PeleC 1K, Perlmutter
— Analysis uses 63 threads/node 5 1008 4;; B
* 30-80x performance improvement ;ﬁ '
 Smaller memory footprint is crucial E 504 S 20187 -
— Original hpcprof exceeded 256GB/node g .
— Required 16x total compute resources I 71.5 JJJ‘]
e Minimal resources vs. application e
— Ran PeleC on 128 and 512 nodes g 40324 -
* Upto Vs of Perimutter ;‘3 i
= | 2,515.9%
— Analyzed measurements on 1 and 8 nodes é S04 i
* Results in 1-2 mins g . L
Biinit] AT T e
0 1,200 2,400 3,600 4,800

See ICS paper for CPU-only results for AMG

Time (seconds)
| #Increased node count by 16X and used 4 ranks/node to avoid out-of-memory errors. |

E\Q\C\\)P i = HPCToolkit-SA =, HPCToolkit

PROJECT

Storage Improvements

e Performance data from real-world apps

— Measurements (In) and results (Out)

 Significant space reductions Tool Size (GiB)
- Up to 10x compression in measurements AMG 65K AMG 262K
— Up to 1254x compression in results In Out In Out

o Results in GBs... not TBs!

HPCToolkit 5.88 195 36.9 [1250
HPCToolkit-SA 6.14 5.55 38.2 [36.6

PeleC 1K PeleC 4K
In Out In Out

HPCToolkit 21.2 4800 50.7 14300
HPCToolkit-SA 2.85 5.27 4.8 |114

Conclusions

- “Less is more”: Efficient use of compute resources is key
- Exploit sparsity to reduce storage and I/O
- Exploit multithreading to efficiently use each node’s cores and threads
- Exploit distributed memory parallelism for scale
« Novel sparse formats for performance measurements and analysis results
- Up to 1254x compression in analysis results for our experiments
« Novel highly-parallel streaming aggregation approach to performance analysis
- Results for large-scale executions in minutes!
- End result: better prepared for performance analysis at exascale!
« Improvements actively being integrated into HPCToolkit

- Will become widely available in a future release

Ongoing Work: Accelerating 1/0
Problems

e Metadata server is slow:
o Our approach of recording 2 files per thread may be costly
e Unnecessary overhead for maintaining page cache consistency between multiple processes
on different nodes
o Our writes don’t overlap

Approach

e \When available, exploit object-based solid state storage for ultimate performance

Ongoing work: Distributed Asynchronous Object Storage (DAOS)

e Designed for massively distributed NVM

e Affordable, fast, large-capacity PM
m SCM (store metadata, latency-sensitive small data)
m NVMe SSDs (bulk data)

Properties

High throughput and IOPS at arbitrary alignment and size

Fine-grained |/O operations with true zero-copy I/0 to SCM

Non-blocking data and metadata operations to allow I/O and computation to overlap
Scalable distributed transactions with guaranteed data consistency and automated recovery

An 1/O abstraction layer for HPCToolkit

» Freedom to choose any I/O option (DAOS, POSIX, Lustre ...) for any file
— Example:
* hpcprof -o daos://<POOL>/<CONT>/database-dir measurement-dir
» We use DAOS for database and use POSIX for measurement files at the same time
» Easy integration of other I/O options in the future
— Example: HPE Rabbit Near Node Storage (Livermore’s El Capitan), Lustre ...
 Details of I/O are invisible to other parts of the software
— Example: just call io->write (...) without concern for underlying I/O implementations

HPCToolkit Funding Acknowledgments

Exascale Computing Project 17-SC-20-SC

Lawrence Livermore National Laboratory Subcontract B645220

Argonne National Laboratory Subcontract 9F-60073

Advanced Micro Devices

Intel Corporation
TotalEnergies EP Research & Technology USA, LLC.

Backup Slides

23

_
‘ EXASCALE
) COMPUTING
\ PROJECT
=

Adapting Algorithms to New Constraints

 E.g. GPU calling context reconstruction
— GPU PC sampling is always flat

— Reconstruct calling context based on \@
static CFG from binary analysis ;|
« 4-step algorithm: °

— Attribute flat samples to call graph 2
— Fixup missing edge weights >

— Convert to DAG by SCC <
— Expand DAG into calling context tree
* Problem: does not obey S.A. constraints!

1 1

— (4) must be class 1 for final CCT...
— ...but (1) must be class 2 for values!

e

e

\) exescae
E\(C\)P COMRLTING Source: Measurement and analysis of GPU-accelerated applications with HPCToolkit, https://doi.org/10.1016/j.parco.2021.102837

Adapting Algorithms to New Constraints

* Generate full possible CCT (Class 1)
— lterate reverse static call paths
— Create full context for each path
e Reattribute metric values (Class 2)
— Attribute flat samples to heads
— Distribute among branching paths
— Assign path values to CCT
* Reconstruction mixed with normal ops
— Generate when a context in need
of reconstruction is parsed
— Reattribute just before inclusive
metric propagation

Class 1
Class 2

DAOS Integration Experiences - |
No matching DAOS function for every POSIX function

- fread, fwrite, fseek...
- fread: We reworked our code to avoid it by using read at
- fwrite: DAOS only has write at, manage our own buffer and cursor
- fseek: We reworked our code to avoid it by using read at and write at
- write
- Multiple processes append to the same log file (debug info for developers)
- Withwrite at, we need to share a buffer or a cursor between processes
- We reworked so that each process creates its own log file
- C++ filesystem abstractions (directory iterator, exists, remove all ...)
- We needed to reimplement these abstractions using our I/O abstraction layer

DAQOS Integration Experiences - |l

- Extra initialization and finalization steps

- Each process initializes its own DAOS pool and container handles

- We set up the output directory and begin recording trace data BEFORE MPI initialization
- Need to manage file system accesses carefully

- Before: use POSIX anywhere without any direct coordination

- Now: pass around I/O abstractions to access the correct file system
- Caching semantics

- Objects created were only visible through command line after cache refreshed

- Using --disable-caching can help, but may hurt performance

