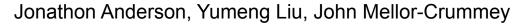
Preparing for Performance Analysis at Exascale



Rice University

STW 2022

June 20, 2022

Performance Analysis in the Exascale Era

- Forthcoming exascale systems pose new challenges
 - Loss may only appear at the full scale of the machine, 10000s of compute nodes
 - Performance must be gathered from every application thread: very large data
 - Rich performance data must be gathered for a complete picture, over 130 GPU metrics
 - Some metrics are only present for GPU code regions: very sparse data
- Performance tools must handle these issues...
 - ...But still provide detailed, useful analysis results!

Outline

- HPCToolkit at a glance
- Exploiting natural sparsity in performance data
- Streaming aggregation for highly-parallel processing of performance data
- Evaluation
- Conclusions
- Ongoing work: exploiting distributed object storage

HPCToolkit: Fine-grain Measurement and Attribution within Kernels

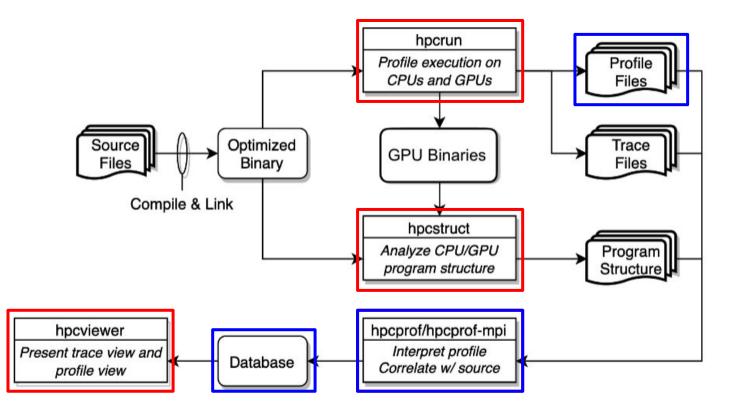
	hpoviewer		
Profile: PeleC3d.gnu.TPROF.CUDA.ex			
<pre>reactor.cpp</pre>	Cause: passed udata structure pointer to lambda capture		
<pre>445 [=] AMREX_GPU_DEVICE() noexcept { 445 for (int icell = blockDim.x * blockIdx.x + threadIdx.x, 448 icell < [udata->ncells_d;] icell += stride) { 449 fKernelSpec(450 icell, udata->dt_save, udata->ireactor_type, yvec_d, ydot_d, 451 udata->rhoe_init_d, udata->rhoesrc_ext_d, udata->rYsrc_d); 453 {}; 454 #clse 455 for (int icell = 0; icell < udata->ncells_d; icell++) { 456 fKernelSner(70-down view Bottom-up view FlatView </pre>	Improvement: pass udata components as scalars https://github.com/AMReX-Combustion/PelePhysics/pull/192 4% speedup on PeleC PMF drm19 test case		

🕆 🖶 🌜 fx 🐲 🕅 🗛 🖬 🖓

GINS.[0,0] (E) GINS:STL_ANY.[0,0] (I) GINS:STL_ANY.[0,0] (E) GINS:STL_GMEM.[0,0] (I) GINS:STL_GMEM.[0,0] (E) GINS.[0,0] (I) 1.24e+13 88.6% 5.58e+12 89.3% Ioop at AMReX_Amr.cpp: 2061 1.05e+13 88.7% ▲ ➡ 2062: amrex::Amr::timeStep(int, double, int, int, double) 1.24e+13 88.6% 1.05e+13 88.7% 5.58e+12 89.3% CPU ▲ B≥ 2015: PeleC::advance(double, double, int, int) 1.24e+13 88.5% 1.05e+13 88.6% 5.57e+12 89.2% 1.24e+13 88.5% 5.57e+12 89.2% S6: PeleC::do_sdc_advance(double, double, int, int) 1.05e+13 88.6% Icop at Advance.cpp: 302 1.24e+13 88.4% 1.05e+13 88.5% 5.57e+12 89.1% context ▲ ■ 308: PeleC::do_sdc_iteration(double, double, int, int, int, int) 1.24e+13 88.4% 1.05e+13 88.5% 5.57e+12 89.1% ✓ ➡ 561: PeleC::react_state(double, double, bool, amrex::MultiFab*) 9.61e+12 68.5% 8.29e+12 70.0% 4.17e+12 66.8% Ioop at React.cop: 109 9.43e+12 67.2% 8.14e+12 68.7% 4.06e+12 65.0% 9.39e+12 66.9% ✓ ➡ 210: react(amrex::Box const&, amrex::Array4<double> const&, amrex::Array4<double> const 8.10e+12 68.4% 4.03e+12 64.5% ▲ B 234: arkEvolve [libsundials_arkode.so.4.7.0] 9.28e+12 66.2% 8.00e+12 67.6% 3.94e+12 63.1% ▲ I erkStep_TakeStep [libsundials_arkode.so.4.7.0] 7.16e+12 51.1% 6.19e+12 52.3% 3.05e+12 48.9% F_RHS(double, _generic_N_Vector*, _generic_N_Vector*, void*) 6.27e+12 44.7% 5.49e+12 46.3% 2.48e+12 39.7% 43: [I] amrex::launch_global<_nv_dl_wrapper_t<_nv_dl_tag<int (*)(double, _generic_N</p> 6.27e+12 44.7% 5.49e+12 46.3% 2.48e+12 39.7% ✓ ➡ 12: [I] __wrapper__device_stub_launch_global<__nv_dl_wrapper_t<__nv_dl_tag<int (*)(do</p> 6.27e+12 44.7% 5.49e+12 46.3% 2.48e+12 39.7% 4 26: [I] __device_stub_ZN5amrex13launch_globallZ6cF_RHSdP17_generic_N_VectorS2 6.27e+12 44.7% 5.49e+12 46.3% 2.48e+12 39.7% 9.4% GPU stalls mostly memory 2.48e+12 39.7% 6.27e+12 44.7% 5.49e+12 46.3% 6.27e+12 44.7% 5.49e+12 46.3% outside the loop 2.48e+12 39.7% stalls 6.27e+12 44.7% 5.49e+12 46.3% 2.48e+12 39.7% 6.27e+12 44.7% # mrex::launch_global<cF_RHS(double, _generic_N_Vector*, _generic_N_Vector*, v.</p> 1.75e+10 0.1% 5.49e+12 46.3% 1.70e+10 0.1% 2.48e+12 39.7% GPU 6.25e+12 44.6% 1.14e+12 18.2% ▲ ■ 12: [I] cF_RHS(double, _generic_N_Vector*, _generic_N_Vector*, void*)::{lambda 1.17e+12 8.3% 5.47e+12 46.2% 1.16e+12 9.8% 2.48e+12 39.7% 4.36e+12 36.8% loop at reactor.cpp: 446 5.14e+12 36.6% 5.35e+10 0.4% 4.62e+10 0.4% 1.38e+12 22.0% 3.29e+10 0.5% context AMReX_GpuLaunchGlobal.H: 12 1.75e+10 0.1% 1.75e+10 0.1% 1.70e+10 0.1% 1.70e+10 0.1%

Experiments on Summit (NVIDIA GPUs)

HPCToolkit Our Work



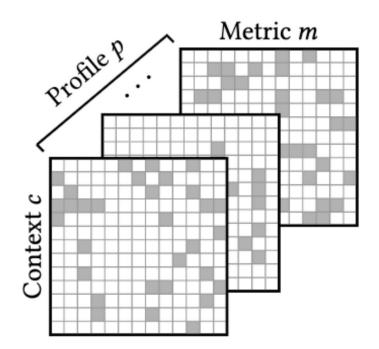
Performance Data is Sparse

- Threads have different roles, zeros for contexts only in other threads
 - MPI helper threads, OpenMP worker threads, GPU streams...
- Metric costs accumulate in expensive leaf functions
 - Distant callers often have no exclusive metrics
- Many metrics apply only to certain instructions or code regions
 - TLB miss only on memory access; GPU cycles only in GPU code
- Some metrics only apply to very specific contexts
 - Kernel launch parameters only for GPU kernels, data motion volume for GPU copy
- All these factors contribute to sparsity!

Performance data

For each value we record, we need to know:

- which metric
- which calling context
- which thread
- ≈ 3-dimensional tensor



Measurement data

Sparsity in Practice

		Density (%)					
	Application	Contexts	Metrics				
Measurement data (In)							
CPU	AMG 8K AMG 8K [†]	69.1 22.7	100.0				
GPU	LAMMPS 1K PeleC 1K	17.7 15.8	1.8 2.0				
Analysis results (Out)							
CPU GPU	AMG 8K AMG 8K [†] [LAMMPS 1K PeleC 1K	0.301 0.059 2.360 0.599	0.182 0.017 1.390 0.635				

With 7 CPU metrics:
23% of the contexts have metric values
21% of the values for contexts are non-zero
With GPU metrics:
16% of the contexts have metric values
2% of the values for contexts are non-zero

Analysis results

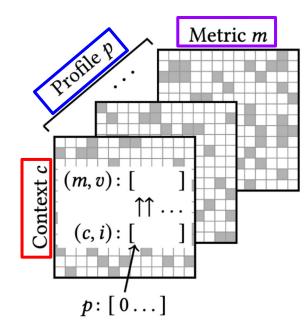
In our experiments, at most:

- 2.3% of the contexts have metric values
- 1.4% of the values for contexts are non-zero

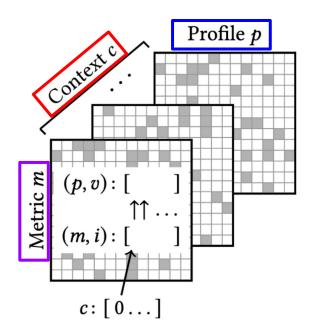
Exploiting Sparsity in Measurement Data

- Each value *v* measured for a metric *m* in a calling context *c*
 - \circ (*m*, *v*) vector lists non-zero metric values
 - (*c*, *i*) vector maps contexts to contiguous ranges of the (m, v) vector
- Exploit sparsity in both metric and context dimensions to reduce space
- Ensure logarithmic access time to values

Exploiting Sparsity in Analysis Results



Profile-Major-Sparse (PMS): data for each profile is contiguous



Context-Major-Sparse (CMS): data for each context is contiguous

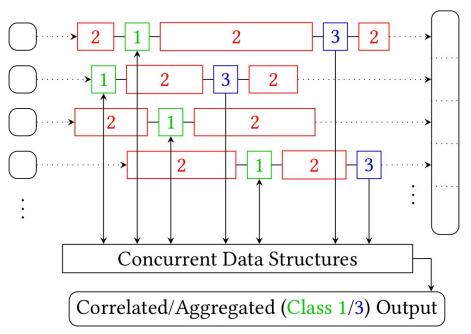
Streaming Aggregation: 3 Classes of Operations

- Data dependency based on number
 - In order: class 1, then 2, then 3
- Class 2 operations run in parallel
 - Independent, per-profile analysis
 - e.g. calculating inclusive cost (per-thread)
 - Read inputs and write outputs directly
 - No significant synchronization
- "Streaming" approach reduces memory
 - Only in-flight profiles in memory!

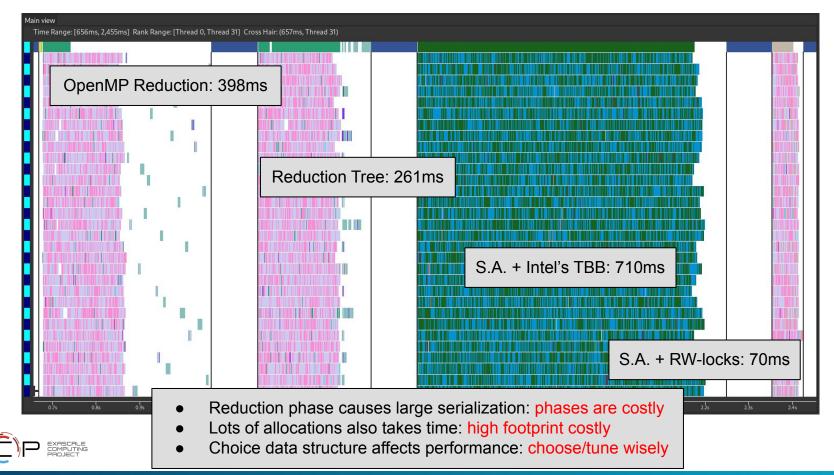
Input ProfilesPer-Profile (Class 2) Output22-2-2-2-2-2-2-22-2-22-2-22-2-22-2-22-2-22-2-22-2-2

Streaming Aggregation: 3 Classes of Operations

- Class 1 operations as needed by Class 2
 - Associative, commutative, idempotent
 - e.g. correlate calling contexts across threads
- Class 3 ops aggregate Class 2 results
 - · Associative and commutative
 - e.g. summary statistics for entire execution
- Update concurrent data structures
- Streaming parallel approach to "aggregation"
 - No defined order, no phases or barriers
 - Fine-grained, data-centric synchronization
 - Outperforms classic reduction approach!

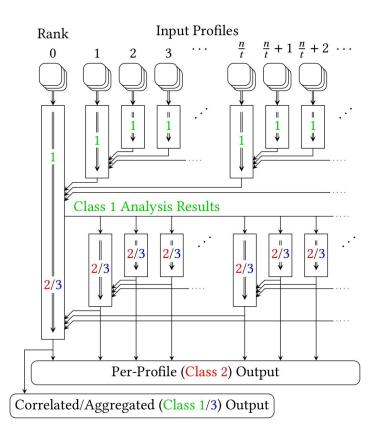


Lessons from a Proxy Application

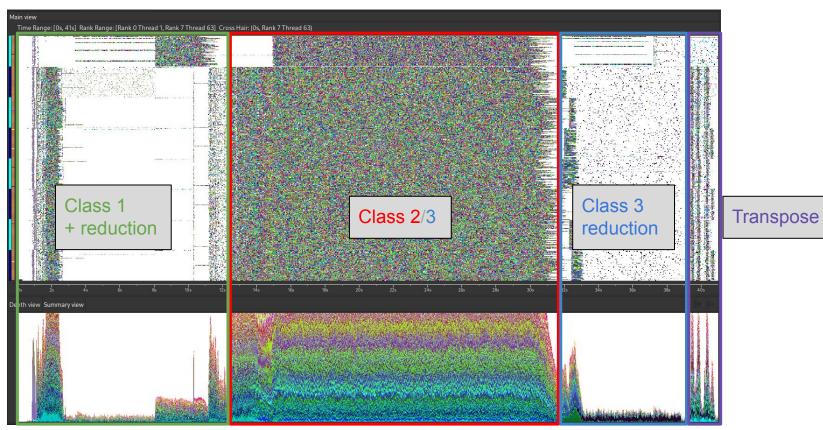


Extension to Multiple Nodes

- Hybrid approach
 - MPI across nodes
 - Streaming Aggregation within
- Class 1/3 ops use reductions across nodes
 - Shared-memory parallelism within a node
- Class 2 ops distributed across nodes
 - Independent, no communication needed
- All nodes perform I/O individually
 - Exploit distributed file system

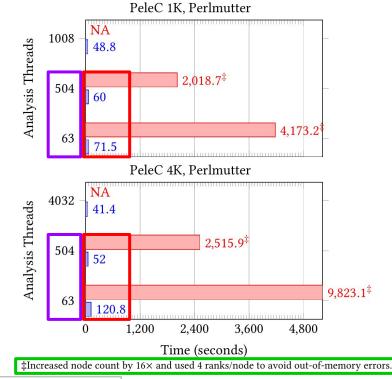


Dense Parallelism from Streaming Aggregation



Performance Improvements Analyzing GPU Measurements

- Post-processing performance from PeleC
 - 512+512 or 2K+2K (threads + GPUs)
 - Analysis uses 63 threads/node
- 30-80x performance improvement
- Smaller memory footprint is crucial
 - Original hpcprof exceeded 256GB/node
 - Required 16x total compute resources
- Minimal resources vs. application
 - Ran PeleC on 128 and 512 nodes
 - Up to ¼ of Perlmutter
 - Analyzed measurements on 1 and 8 nodes
- Results in 1-2 mins



See ICS paper for CPU-only results for AMG

📇 HPCToolkit-SA 📇 HPCToolkit

Storage Improvements

- Performance data from real-world apps ٠
 - Measurements (In) and results (Out) _
- Significant space reductions ٠
 - Up to 10x compression in measurements _

- Up to 1254x compression in results _
- **Results in GBs... not TBs!**

Tool	Size (GiB)				
	AMG 65K		AMG 262K		
	In	Out	In	Out	
HPCToolkit	5.88	195	36.9	1250	
HPCToolkit-SA	6.14	5.55	38.2	36.6	
	PeleC 1K		PeleC 4K		
	In	Out	In	Out	
HPCToolkit	21.2	4800	50.7	14300	
HPCToolkit-SA	2.85	5.27	4.8	11.4	

Conclusions

- "Less is more": Efficient use of compute resources is key
 - Exploit sparsity to reduce storage and I/O
 - Exploit multithreading to efficiently use each node's cores and threads
 - Exploit distributed memory parallelism for scale
- Novel sparse formats for performance measurements and analysis results
 - Up to 1254x compression in analysis results for our experiments
- Novel highly-parallel streaming aggregation approach to performance analysis
 - Results for large-scale executions in minutes!
- End result: better prepared for performance analysis at exascale!
- Improvements actively being integrated into HPCToolkit
 - Will become widely available in a future release

Ongoing Work: Accelerating I/O

Problems

- Metadata server is slow:
 - Our approach of recording 2 files per thread may be costly
- Unnecessary overhead for maintaining page cache consistency between multiple processes on different nodes
 - Our writes don't overlap

Approach

• When available, exploit object-based solid state storage for ultimate performance

Ongoing work: Distributed Asynchronous Object Storage (DAOS)

- Designed for massively distributed NVM
- Affordable, fast, large-capacity PM
 - SCM (store metadata, latency-sensitive small data)
 - NVMe SSDs (bulk data)

Properties

- High throughput and IOPS at arbitrary alignment and size
- Fine-grained I/O operations with true zero-copy I/O to SCM
- Non-blocking data and metadata operations to allow I/O and computation to overlap
- Scalable distributed transactions with guaranteed data consistency and automated recovery

An I/O abstraction layer for HPCToolkit

- Freedom to choose any I/O option (DAOS, POSIX, Lustre ...) for any file
 - Example:
 - hpcprof -o daos://<POOL>/<CONT>/database-dir measurement-dir
 - We use DAOS for database and use POSIX for measurement files at the same time
- Easy integration of other I/O options in the future
 - Example: HPE Rabbit Near Node Storage (Livermore's El Capitan), Lustre ...
- Details of I/O are invisible to other parts of the software
 - Example: just call io->write(...) without concern for underlying I/O implementations

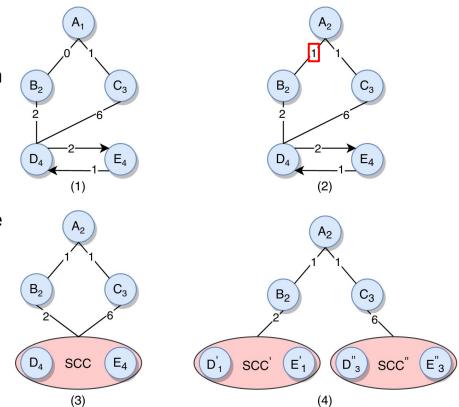
HPCToolkit Funding Acknowledgments

- Exascale Computing Project 17-SC-20-SC
- Lawrence Livermore National Laboratory Subcontract B645220
- Argonne National Laboratory Subcontract 9F-60073
- Advanced Micro Devices
- Intel Corporation
- TotalEnergies EP Research & Technology USA, LLC.

Backup Slides

Adapting Algorithms to New Constraints

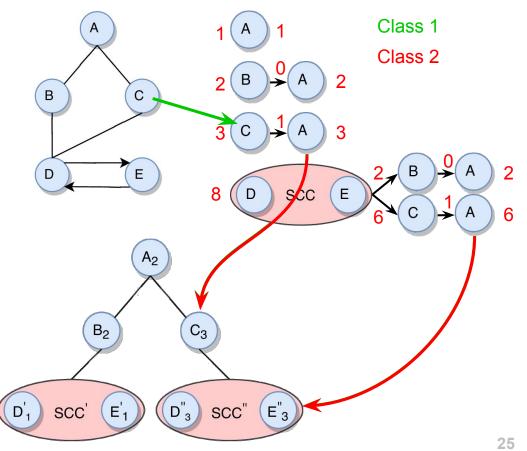
- E.g. GPU calling context reconstruction
 - GPU PC sampling is always flat
 - Reconstruct calling context based on static CFG from binary analysis
- 4-step algorithm:
 - Attribute flat samples to call graph
 - Fixup missing edge weights
 - Convert to DAG by SCC
 - Expand DAG into calling context tree
- Problem: does not obey S.A. constraints!
 - (4) must be class 1 for final CCT...
 - ...but (1) must be class 2 for values!



Source: Measurement and analysis of GPU-accelerated applications with HPCToolkit, https://doi.org/10.1016/j.parco.2021.102837

Adapting Algorithms to New Constraints

- Generate full possible CCT (Class 1)
 - Iterate reverse static call paths
 - Create full context for each path
- Reattribute metric values (Class 2)
 - Attribute flat samples to heads
 - Distribute among branching paths
 - Assign path values to CCT
- Reconstruction mixed with normal ops
 - Generate when a context in need of reconstruction is parsed
 - Reattribute just before inclusive metric propagation



DAOS Integration Experiences - I

No matching DAOS function for every POSIX function

- fread, fwrite, fseek...
 - fread: We reworked our code to avoid it by using read_at
 - fwrite: DAOS only has write_at, manage our own buffer and cursor
 - fseek: We reworked our code to avoid it by using read_at and write_at
- write
 - Multiple processes append to the same log file (debug info for developers)
 - With write_at, we need to share a buffer or a cursor between processes
 - We reworked so that each process creates its own log file
- C++ filesystem abstractions (directory_iterator, exists, remove_all ...)
 - We needed to reimplement these abstractions using our I/O abstraction layer

DAOS Integration Experiences - II

- Extra initialization and finalization steps
 - Each process initializes its own DAOS pool and container handles
 - We set up the output directory and begin recording trace data BEFORE MPI initialization
- Need to manage file system accesses carefully
 - Before: use POSIX anywhere without any direct coordination
 - Now: pass around I/O abstractions to access the correct file system
- Caching semantics
 - Objects created were only visible through command line after cache refreshed
 - Using --disable-caching can help, but may hurt performance

