
LLNL-PRES-836441
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Building a DSL for ABI compatibility
Scalable Tools Workshop 2022 | Spack BUILD SI

Greg Becker and Nathan Hanford

June 21, 2022

2
LLNL-PRES-836441

What would make people happy

§ Can it be as easy to install scientific software as it is to install your favorite editor?

§ Can it be as fast to install scientific software as it is to install your favorite editor?

3
LLNL-PRES-836441

§ Not much standardization in HPC: every machine/app has a different software stack

§ Sites share unique hardware among teams with very different requirements
— Users want to experiment with many exotic architectures, compilers, MPI versions
— All of this is necessary to get the best performance

§ Example environment for some LLNL codes:

The HPC software space is immense

48 third party packages
3 MPI versions

IntelMPI MVAPICH2
OpenMPI

x Multiple Platforms
x86_64 aarch64 PPC64LE

x

Up to 7 compilers
Intel GCC XLC Clang
Cray NVHPC hipcc

x Oh, and 2-3 versions of
each package

x = ~7,500 combinations

We want an easy way to quickly sample the space, to install configurations on demand!

4
LLNL-PRES-836441

§ Spack hashes represent unique from-source
builds
— Multiple versions of a package with built with

multiple options (variants) can coexist
— Each build gets a Merkle hash representing its build

configuration, including all dependencies

§ Spack is strict about dependencies
— One version of any dependency per graph
— You must deploy with the hashes you built with
— If you want to change a dependency, you must

rebuild, and the parent will have a new hash

§ This makes it hard to swap in new binaries

The Spack Software Deployment Model

mpileaks

mpi

callpath dyninst

libdwarf

libelf

6zvh4ueem6f5yrcfugh67k2hrtxbgbcs

74mwnxgn6nujehpyyalhwizwojwn5zga

4xxvh5ldm7gm32ngtixcm2odaer3cvvb

k2yumgxwq6ijubivfpbjpmrrbzyqcoot

qo2af23r2npatxdtna3fmwkeennywixp

cwx4qwk4bkamf4gjrglmxfu3bhasyt74

5
LLNL-PRES-836441

§ Distro developers make sure that underlying ABI for a given OS
version is stable.

§ Channel authors and repo maintainers rely on build-farms to ensure
that ABI doesn’t break within an OS version.
— Some (RHEL) use static analysis, like libabigail, to detect and avoid ABI breaks
— Testing also avoids ABI breaks

§ Distro maintainers apply extensive knowledge of software ecosystem
and past ABI issues to decide which package versions to hold back
until a new release.

§ Distributed binary packages (e.g., RPM, deb) typically don’t contain
detailed provenance information
— Direct dependency requirements (mostly unversioned)
— No transitive dependency information
— No build environment information

§ Cannot safely share an RPM across RPM-based distros (e.g.,
RHEL/Fedora/SUSE)
— Distro is a curated set of compatible packages
— Package managers can’t actually tell what’s compatible

Existing package managers resolve ABI issues semi-manually

Debian package dependencies by type

6
LLNL-PRES-836441

Spack binary packages model full provenance

Traditional OS
package manager

Recipe per
package configuration

(need rewrites for new systems)

Portable (unoptimized)
x86_64 binaries

One software stack
upgraded over timeBuild farm

Parameterized recipe
per package

(Same recipe evolves for all targets)
Build farm / CI

Optimized
Graviton2 binaries

Optimized
Ice Lake binaries

Optimized
GPU binaries

Many
software stacks

Built for specific:
Systems

Compilers
OS’s
MPIs
etc.

Spack

Users/developers can also build directly from source

7
LLNL-PRES-836441

How Spack defines the build space

mpileaks ^callpath@1.0+debug ^libelf@0.8.11 User input: abstract spec with some constraints

Concrete spec is fully constrained
and can be passed to install.

mpileaks@2.3
%gcc@4.7.3
=linux-ppc64

mpich@3.0.4
%gcc@4.7.3
=linux-ppc64

callpath@1.0
%gcc@a4.7.3+debug

=linux-ppc64

dyninst@8.1.2
%gcc@4.7.3
=linux-ppc64

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

libdwarf@20130729
%gcc@4.7.3
=linux-ppc64

Abstract, normalized spec
with some dependencies.

mpileaks

mpi

callpath@1.0
+debug

dyninst

libelf@0.8.11

libdwarf

N
orm

alize

Concretize Store

{
"spec": {
"_meta": {
"version": 2

},
"nodes": [
{
"name": "mpileaks",
"version": "1.0",
"arch": {
"platform": "linux",
"platform_os": ”centos7",
"target": {
"name": ”power9le",
"vendor": ”IBM",
"features": […],
"generation": 9,
"parents": [”power8le"]

}
},
"compiler": {
"name": "gcc",
"version": "10.2.1"

},
"namespace": "builtin",
"parameters": {
"stackstart": "0",…

"dependencies": [
"name": "callpath",
"build_hash":

"ayrvk72jdt5d4wznd5wubsqzvl5ffb5p",
"type": ["build", "link"]

},
{
"name": ”mpich",

…

spec.json

Detailed provenance is stored
with the installed package

8
LLNL-PRES-836441

§ Uses archspec to reason about target
compatibility.

§ Specs also include information about the
build OS
— mostly a proxy for libc, given that we build

most dependencies in Spack.
— if we model libc in Spack we can likely start

omitting this.

§ Spack’s solver currently uses this to
ensure that we don’t build a dependency
that’s incompatible with a dependent.
— e.g., we currently don’t allow a haswell build

to depend on an icelake build

Spack can reason about microarchitecture
and OS compatibility

x86_64

x86_64_v2
cx16 lahf_lm mmx
popcnt sse sse2

sse4_1 sse4_2 ssse3

nocona (GenuineIntel)
mmx sse sse2

sse3

k10 (AuthenticAMD)
3dnow 3dnowext abm

cx16 mmx sse
sse2 sse4a

x86_64_v3
abm avx avx2
bmi1 bmi2 f16c
fma movbe xsave

nehalem
bulldozer (AuthenticAMD)

abm aes avx
fma4 pclmulqdq sse4a

xop

x86_64_v4
avx512bw avx512cd avx512dq

avx512f avx512vl
haswell

excavator
zen (AuthenticAMD)

aes clflushopt clzero
fsgsbase pclmulqdq rdseed
sse4a xsavec xsaveopt

skylake_avx512
clwb

core2
ssse3

westmere
aes pclmulqdq

sandybridge
avx

ivybridge
f16c rdrand

broadwell
adx rdseed

skylake
clflushopt xsavec xsaveopt

mic_knl
avx512cd avx512er avx512f

avx512pf

cannonlake
avx512bw avx512cd avx512dq

avx512f avx512ifma avx512vbmi
avx512vl sha umip

cascadelake
avx512_vnni

icelake
avx512_bitalg avx512_vbmi2 avx512_vpopcntdq

gfni rdpid sha_ni
vaes vpclmulqdq

piledriver
bmi1 f16c fma

tbm

steamroller
fsgsbase

zen2
clwb

zen3
pku vaes vpclmulqdq

Microarchitecture
compatibility
in archspec

Arrows denote
compatibility

9
LLNL-PRES-836441

We want the package manager to know statically whether two packages will work
together.

Two sources of information seem practical:

1. Match symbol and type information (binary analysis)
— Keep (some) symbol information around, and make the solver aware
— Solver searches for configuration with guaranteed-compatible symbols
— Not all compatibility is in the symbols (particularly package semantics)

2. Get the package maintainers to tell us (with a DSL)
— We already record a lot of provenance in the Spack package
— What else do we need to express the ABI surface over time?
— Compatibility could be conditional on version, features/variants, flags, usage of package, etc.
— How do we design a DSL for this that people will bother writing?

How do we reason about software compatibility?

ß Focus of another collaboration
with U. Wisconsin

ß This work

10
LLNL-PRES-836441

§ Running against a new MPI
— OpenMPI package maintainers tell Spack that OpenMPI 4.0.7 is ABI-compatible with OpenMPI 4.1.2
— OpenMPI 4.1.2 satisfies all symbols present in the 4.0.7 version.
— Therefore, users will know that software built against OpenMPI 4.0.7 will run against OpenMPI

4.1.2, regardless of the symbols used.

§ Running in a container
— User built their application with MPICH in a container
— needs to run with MVAPICH2 from the host for performance
— bind-mount host MPI into the container

§ Spack deployment?
— We have an HDF5 binary built with MVAPICH2 2.3.1
— Can we deploy it against MVAPICH2 2.2.0 from the host system?

We frequently want to swap in a new MPI in HPC

11
LLNL-PRES-836441

§ Suppose a Spack package depends on
some underlying piece of system
software
— (Called “externals” in Spack parlance)

§ Then a system update is required, which
includes updating this dependency.

§ If the new version is ABI-compatible with
the existing version, how do we tell this
explicitly to Spack so we don’t have a
“rebuild the world” situation?

§ What if the dependency should trigger
rebuilds?

The External Dependency Problem

myParsingTool@0.0.1

libfastjson@0.99.6 zlib@1.2.10

libfastjson@0.99.7

ABI Break

myParsingTool@0.0.1'

zlib@1.2.11

12
LLNL-PRES-836441

§ This will be continuously informed by our binary analysis work

§ In many cases, the user just needs to manually tell Spack where to go looking for an
external library dependency, etc.

§ We need a reliable, automatic way to keep up with OS updates.
— Eventually, our ABISpec filtering algorithm will also be able to determine if we care about ABI

surface changes.

We are working on better External Dependency Representation

13
LLNL-PRES-836441

§ Compiler objects currently support C, C++, Fortran, and Fortran 77 as distinct
languages.

§ Models compilers using specs, adding attributes for targets, modules, aliases, extra
RPATHs, and more.

§ Most importantly, default to settings that make binary relocation possible.

§ Work is ongoing to make compilers into proper Dependencies using the Spack model.

We are working on compilers as dependencies

14
LLNL-PRES-836441

1. New deployment and metadata model
— Splicing

• Need to be able to swap one dependency for another
• Need to avoid losing provenance and preserve build metadata even when deployment is different

— Rewiring
• Need to be able to relocate package RPATH’s, shebangs, etc. to point to new dependency
• Use patchelf, binary rewriting, rewriting symlinks, etc. on installation as part of relocation

2. New ABI information in packages
— Specified with DSL by user
— Tells you what swaps are safe

3. Solver changes
— Solver needs to know about ABI constraints
— Find safe configurations

We need three things to make binary swapping possible in Spack

15
LLNL-PRES-836441

§ A binary of trilinos has already been built
and will be deployed on a system with its
own HDF5 installation (in green).

§ We need to use this system-installed
HDF5 (in red).

§ We we don’t want to totally rebuild
trilinos.

§ So the system-installed HDF5 is spliced
into the DAG

Splicing: a new deployment model for Spack

trilinos

hdf5

zlib

hdf5'

zlib'

16
LLNL-PRES-836441

§ Trilinos* installation uses the the system-
installed HDF5.
— Different HDF5 than it was built with
— RPATHs from trilinos install now point at the

new HDF5

§ Black arrow is a “build_spec”
— Metadata recording original build graph
— Records original build information
— Can be used to check ABI compatibility later

§ Trilinos now also uses the system-
installed zlib’ that HDF5 depended on
— We can also do “intransitive splices”
— Would use zlib from original trilinos graph
— Not shown here.

Splicing HDF5

trilinos

hdf5

zlib

hdf5'

zlib'

trilinos* Deployed spec

HDF5 deployed
unspliced

Old build
provenance

17
LLNL-PRES-836441

The end goal: Build fine-grained compatibility models that cover
functions, data types, and other aspects of ABI

A version v1

B version v2

C version v3

C++ runtime
version v4

(not modeled)

C++ runtime version v4
defines t1

Current model is coarse Complete model represents how changes affect code

A version v1

B version v2, defines t2

C version v3, defines t3

f(t1) g(t1, t2)

h(t3) i(t1, t3)

j(t1)

k(t1)

l(t1)

§ We will model libraries at call
granularity:
— Entry calls
— Exit calls
— Data type definitions & usage

§ We will model runtime libraries
behind compilers
— C++, OpenMP, glibc
— GPU runtimes

§ We will model changes in the graph
— “If h(t3) changes, is B still correct?
— “If C changes, what needs to be

rebuilt?”
— We will model semantics of interfaces

C version v3, defines t3

h(t3) i(t1, t3)

C++ runtime version v4
defines t1

A version v1

B version v2, defines t2

C version v3, defines t3

f(t1) g(t1, t2)

h(t3) i(t1, t3)

j(t1)

k(t1)

l(t1)

This model allows us to reason about compatibility, so we can find usable packages

18
LLNL-PRES-836441

§ Will encapsulate relevant ABI information about a set of otherwise compatible specs.

§ At first, it will just contain all the provenance of a spec with maybe just the build
dependencies removed.

§ However, over time, this will become more lenient in some ways, and stricter in
others.

class ABIspec(object):
…
@staticmethod
def _return_abi(os_tag, target_tag, compiler_tag, abi_version):

platform = spack.platforms.host()
…
abi_tuple = …
return ABIspec(abi_tuple)

Our Proposed Solution in Spack: The ABISpec

We will also present a clean API for package maintainers in package.py!

19
LLNL-PRES-836441

§ ABI Specs will allow us to check whether nodes in a
spliced configuration are compatible

§ For each deployed edge A à B:
— Check whether abispec(B) satisfies abispec(A)[B]

• Includes DSL information from packages:
– Version constraints
– Enabled sub-APIs
– Compiler flags
– etc.

• Can also (optionally) include binary analysis information
– Function and symbol comparisons straight from the binary

§ Future work will integrate constraints into the solver as
facts and rules
— Search for correct configurations, given a set of binaries

Checking ABI in a spliced graph

trilinos

hdf5

zlib

hdf5'

zlib'

trilinos*

ABI

ABI

ABI

Pure metadata;
not deployed

Spliced trilinos
deployment

20
LLNL-PRES-836441

§ WI4MPI and MPItrampoline leverage the
fact that MPI implementations adhere to
the MPI Standard API in order to translate
between ABI-incompatible
implementations.

§ With WI4MPI, you can build using MPICH,
and then run using OpenMPI or vice-
versa.

§ With either, you can also build against the
“fake” MPI library and then run with any
MPI library (pictured at right).

§ How can we represent this in Spack?

ABI Translation Shims

trilinos

MVAPICH2

trilinos'

WI4MPI

OpenMPI

21
LLNL-PRES-836441

zlib ABI stability

• Even a seemingly stable package can go
through many subtle ABI changes

• (as seen on https://abi-laboratory.pro)

https://abi-laboratory.pro/

22
LLNL-PRES-836441

§ Integrate ABI specs and constraints into solver
— Search for correct configurations
— How many constraints and how much ABI info can we cram in a solver?

§ How to avoid combinatorial explosion?
— Allowing swaps makes the deployment space much larger (combinatorially)
— Can we get away with preferring swaps close to the build confguration?
— How do we prefer one binary over another if metadata is arbitrary?
— What curation will still be necessary?

§ When should you rebuild instead of reusing?
— How do you quantify this decision?

Future work

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

