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What would make people happy

§ Can it be as easy to install scientific software as it is to install your favorite editor?

§ Can it be as fast to install scientific software as it is to install your favorite editor?
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§ Not much standardization in HPC: every machine/app has a different software stack

§ Sites share unique hardware among teams with very different requirements
— Users want to experiment with many exotic architectures, compilers, MPI versions
— All of this is necessary to get the best performance

§ Example environment for some LLNL codes:

The HPC software space is immense

48 third party packages
3 MPI versions

IntelMPI MVAPICH2    
OpenMPI

x Multiple Platforms
x86_64    aarch64    PPC64LE

x

Up to 7 compilers
Intel    GCC    XLC    Clang
Cray NVHPC hipcc

x Oh, and 2-3 versions of
each package

x = ~7,500 combinations

We want an easy way to quickly sample the space, to install configurations on demand!
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§ Spack hashes represent unique from-source 
builds
— Multiple versions of a package with built with 

multiple options (variants) can coexist
— Each build gets a Merkle hash representing its build 

configuration, including all dependencies

§ Spack is strict about dependencies
— One version of any dependency per graph
— You must deploy with the hashes you built with
— If you want to change a dependency, you must 

rebuild, and the parent will have a new hash

§ This makes it hard to swap in new binaries

The Spack Software Deployment Model

mpileaks

mpi

callpath dyninst

libdwarf

libelf

6zvh4ueem6f5yrcfugh67k2hrtxbgbcs

74mwnxgn6nujehpyyalhwizwojwn5zga

4xxvh5ldm7gm32ngtixcm2odaer3cvvb

k2yumgxwq6ijubivfpbjpmrrbzyqcoot

qo2af23r2npatxdtna3fmwkeennywixp

cwx4qwk4bkamf4gjrglmxfu3bhasyt74



5
LLNL-PRES-836441

§ Distro developers make sure that underlying ABI for a given OS 
version is stable.

§ Channel authors and repo maintainers rely on build-farms to ensure 
that ABI doesn’t break within an OS version.
— Some (RHEL) use static analysis, like libabigail, to detect and avoid ABI breaks
— Testing also avoids ABI breaks

§ Distro maintainers apply extensive knowledge of software ecosystem 
and past ABI issues to decide which package versions to hold back 
until a new release.

§ Distributed binary packages (e.g., RPM, deb) typically don’t contain 
detailed provenance information
— Direct dependency requirements (mostly unversioned)
— No transitive dependency information
— No build environment information

§ Cannot safely share an RPM across RPM-based distros (e.g., 
RHEL/Fedora/SUSE)
— Distro is a curated set of compatible packages
— Package managers can’t actually tell what’s compatible

Existing package managers resolve ABI issues semi-manually

Debian package dependencies by type
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Spack binary packages model full provenance

Traditional OS
package manager

Recipe per
package configuration

(need rewrites for new systems)

Portable (unoptimized)
x86_64 binaries

One software stack
upgraded over timeBuild farm

Parameterized recipe
per package

(Same recipe evolves for all targets)
Build farm / CI

Optimized 
Graviton2 binaries

Optimized
Ice Lake binaries

Optimized
GPU binaries

Many 
software stacks 

Built for specific:
Systems

Compilers
OS’s
MPIs
etc.

Spack

Users/developers can also build directly from source
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How Spack defines the build space

mpileaks ^callpath@1.0+debug ^libelf@0.8.11 User input: abstract spec with some constraints

Concrete spec is fully constrained
and can be passed to install.

mpileaks@2.3
%gcc@4.7.3
=linux-ppc64

mpich@3.0.4
%gcc@4.7.3
=linux-ppc64

callpath@1.0
%gcc@a4.7.3+debug

=linux-ppc64

dyninst@8.1.2
%gcc@4.7.3
=linux-ppc64

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

libdwarf@20130729
%gcc@4.7.3
=linux-ppc64

Abstract, normalized spec
with some dependencies.

mpileaks

mpi

callpath@1.0
+debug

dyninst

libelf@0.8.11

libdwarf

N
orm

alize

Concretize Store

{
"spec": {
"_meta": {
"version": 2

},
"nodes": [
{
"name": "mpileaks",
"version": "1.0",
"arch": {
"platform": "linux",
"platform_os": ”centos7",
"target": {
"name": ”power9le",
"vendor": ”IBM",
"features": […],
"generation": 9,
"parents": [”power8le"]

}
},
"compiler": {
"name": "gcc",
"version": "10.2.1"

},
"namespace": "builtin",
"parameters": {
"stackstart": "0",…

"dependencies": [
"name": "callpath",
"build_hash": 

"ayrvk72jdt5d4wznd5wubsqzvl5ffb5p",
"type": ["build", "link"]

},
{
"name": ”mpich",

…

spec.json

Detailed provenance is stored
with the installed package
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§ Uses archspec to reason about target 
compatibility.

§ Specs also include information about the 
build OS
— mostly a proxy for libc, given that we build 

most dependencies in Spack.
— if we model libc in Spack we can likely start 

omitting this.

§ Spack’s solver currently uses this to 
ensure that we don’t build a dependency 
that’s incompatible with a dependent.
— e.g., we currently don’t allow a haswell build 

to depend on an icelake build

Spack can reason about microarchitecture
and OS compatibility

x86_64

x86_64_v2
cx16 lahf_lm mmx
popcnt sse sse2

sse4_1 sse4_2 ssse3

nocona (GenuineIntel)
mmx sse sse2

sse3

k10 (AuthenticAMD)
3dnow 3dnowext abm

cx16 mmx sse
sse2 sse4a

x86_64_v3
abm avx avx2
bmi1 bmi2 f16c
fma movbe xsave

nehalem
bulldozer (AuthenticAMD)

abm aes avx
fma4 pclmulqdq sse4a

xop

x86_64_v4
avx512bw avx512cd avx512dq

avx512f avx512vl
haswell

excavator
zen (AuthenticAMD)

aes clflushopt clzero
fsgsbase pclmulqdq rdseed
sse4a xsavec xsaveopt

skylake_avx512
clwb

core2
ssse3

westmere
aes pclmulqdq

sandybridge
avx

ivybridge
f16c rdrand

broadwell
adx rdseed

skylake
clflushopt xsavec xsaveopt

mic_knl
avx512cd avx512er avx512f

avx512pf

cannonlake
avx512bw avx512cd avx512dq

avx512f avx512ifma avx512vbmi
avx512vl sha umip

cascadelake
avx512_vnni

icelake
avx512_bitalg avx512_vbmi2 avx512_vpopcntdq

gfni rdpid sha_ni
vaes vpclmulqdq

piledriver
bmi1 f16c fma

tbm

steamroller
fsgsbase

zen2
clwb

zen3
pku vaes vpclmulqdq

Microarchitecture
compatibility
in archspec

Arrows denote
compatibility
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We want the package manager to know statically whether two packages will work 
together.

Two sources of information seem practical:

1. Match symbol and type information (binary analysis)
— Keep (some) symbol information around, and make the solver aware
— Solver searches for configuration with guaranteed-compatible symbols
— Not all compatibility is in the symbols (particularly package semantics)

2. Get the package maintainers to tell us (with a DSL)
— We already record a lot of provenance in the Spack package
— What else do we need to express the ABI surface over time? 
— Compatibility could be conditional on version, features/variants, flags, usage of package, etc.
— How do we design a DSL for this that people will bother writing?

How do we reason about software compatibility?

ß Focus of another collaboration 
with U. Wisconsin

ß This work
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§ Running against a new MPI
— OpenMPI package maintainers tell Spack that OpenMPI 4.0.7 is ABI-compatible with OpenMPI 4.1.2
— OpenMPI 4.1.2 satisfies all symbols present in the 4.0.7 version.
— Therefore, users will know that software built against OpenMPI 4.0.7 will run against OpenMPI

4.1.2, regardless of the symbols used.

§ Running in a container
— User built their application with MPICH in a container
— needs to run with MVAPICH2 from the host for performance
— bind-mount host MPI into the container

§ Spack deployment?
— We have an HDF5 binary built with MVAPICH2 2.3.1
— Can we deploy it against MVAPICH2 2.2.0 from the host system?

We frequently want to swap in a new MPI in HPC
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§ Suppose a Spack package depends on 
some underlying piece of system 
software
— (Called “externals” in Spack parlance)

§ Then a system update is required, which 
includes updating this dependency.

§ If the new version is ABI-compatible with 
the existing version, how do we tell this 
explicitly to Spack so we don’t have a 
“rebuild the world” situation?

§ What if the dependency should trigger 
rebuilds?

The External Dependency Problem

myParsingTool@0.0.1

libfastjson@0.99.6 zlib@1.2.10

libfastjson@0.99.7

ABI Break

myParsingTool@0.0.1'

zlib@1.2.11
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§ This will be continuously informed by our binary analysis work

§ In many cases, the user just needs to manually tell Spack where to go looking for an 
external library dependency, etc.

§ We need a reliable, automatic way to keep up with OS updates.
— Eventually, our ABISpec filtering algorithm will also be able to determine if we care about ABI 

surface changes.

We are working on better External Dependency Representation
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§ Compiler objects currently support C, C++, Fortran, and Fortran 77 as distinct 
languages.

§ Models compilers using specs, adding attributes for targets, modules, aliases, extra 
RPATHs, and more.

§ Most importantly, default to settings that make binary relocation possible.

§ Work is ongoing to make compilers into proper Dependencies using the Spack model.

We are working on compilers as dependencies



14
LLNL-PRES-836441

1. New deployment and metadata model
— Splicing

• Need to be able to swap one dependency for another
• Need to avoid losing provenance and preserve build metadata even when deployment is different

— Rewiring
• Need to be able to relocate package RPATH’s, shebangs, etc. to point to new dependency
• Use patchelf, binary rewriting, rewriting symlinks, etc. on installation as part of relocation

2. New ABI information in packages
— Specified with DSL by user
— Tells you what swaps are safe

3. Solver changes
— Solver needs to know about ABI constraints 
— Find safe configurations

We need three things to make binary swapping possible in Spack
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§ A binary of trilinos has already been built 
and will be deployed on a system with its 
own HDF5 installation (in green).

§ We need to use this system-installed 
HDF5 (in red).

§ We we don’t want to totally rebuild 
trilinos.

§ So the system-installed HDF5 is spliced 
into the DAG

Splicing: a new deployment model for Spack

trilinos

hdf5

zlib

hdf5'

zlib'
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§ Trilinos* installation uses the the system-
installed HDF5.
— Different HDF5 than it was built with
— RPATHs from trilinos install now point at the 

new HDF5

§ Black arrow is a “build_spec”
— Metadata recording original build graph
— Records original build information
— Can be used to check ABI compatibility later

§ Trilinos now also uses the system-
installed zlib’ that HDF5 depended on
— We can also do “intransitive splices”
— Would use zlib from original trilinos graph
— Not shown here.

Splicing HDF5

trilinos

hdf5

zlib

hdf5'

zlib'

trilinos* Deployed spec

HDF5 deployed
unspliced

Old build
provenance
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The end goal: Build fine-grained compatibility models that cover
functions, data types, and other aspects of ABI

A version v1

B version v2 

C version v3

C++ runtime 
version v4

(not modeled)

C++ runtime version v4
defines t1

Current model is coarse Complete model represents how changes affect code

A version v1

B version v2, defines t2

C version v3, defines t3

f(t1) g(t1, t2)

h(t3) i(t1, t3)

j(t1)

k(t1)

l(t1)

§ We will model libraries at call 
granularity:
— Entry calls
— Exit calls
— Data type definitions & usage

§ We will model runtime libraries 
behind compilers
— C++, OpenMP, glibc
— GPU runtimes

§ We will model changes in the graph
— “If h(t3) changes, is B still correct?
— “If C changes, what needs to be 

rebuilt?”
— We will model semantics of interfaces

C version v3, defines t3

h(t3) i(t1, t3)

C++ runtime version v4
defines t1

A version v1

B version v2, defines t2

C version v3, defines t3

f(t1) g(t1, t2)

h(t3) i(t1, t3)

j(t1)

k(t1)

l(t1)

This model allows us to reason about compatibility, so we can find usable packages
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§ Will encapsulate relevant ABI information about a set of otherwise compatible specs.

§ At first, it will just contain all the provenance of a spec with maybe just the build 
dependencies removed.

§ However, over time, this will become more lenient in some ways, and stricter in 
others.

class ABIspec(object):
…
@staticmethod
def _return_abi(os_tag, target_tag, compiler_tag, abi_version):

platform = spack.platforms.host()
…
abi_tuple = …
return ABIspec(abi_tuple)

Our Proposed Solution in Spack: The ABISpec

We will also present a clean API for package maintainers in package.py!
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§ ABI Specs will allow us to check whether nodes in a 
spliced configuration are compatible

§ For each deployed edge A à B:
— Check whether abispec(B) satisfies abispec(A)[B]

• Includes DSL information from packages:
– Version constraints
– Enabled sub-APIs
– Compiler flags
– etc.

• Can also (optionally) include binary analysis information
– Function and symbol comparisons straight from the binary

§ Future work will integrate constraints into the solver as 
facts and rules
— Search for correct configurations, given a set of binaries

Checking ABI in a spliced graph

trilinos

hdf5

zlib

hdf5'

zlib'

trilinos*

ABI

ABI

ABI

Pure metadata;
not deployed

Spliced trilinos
deployment
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§ WI4MPI and MPItrampoline leverage the 
fact that MPI implementations adhere to 
the MPI Standard API in order to translate 
between ABI-incompatible 
implementations.

§ With WI4MPI, you can build using MPICH, 
and then run using OpenMPI or vice-
versa.

§ With either, you can also build against the 
“fake” MPI library and then run with any 
MPI library (pictured at right).

§ How can we represent this in Spack?

ABI Translation Shims

trilinos

MVAPICH2

trilinos'

WI4MPI

OpenMPI
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zlib ABI stability

• Even a seemingly stable package can go 
through many subtle ABI changes

• (as seen on https://abi-laboratory.pro)

https://abi-laboratory.pro/
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§ Integrate ABI specs and constraints into solver
— Search for correct configurations
— How many constraints and how much ABI info can we cram in a solver?

§ How to avoid combinatorial explosion?
— Allowing swaps makes the deployment space much larger (combinatorially)
— Can we get away with preferring swaps close to the build confguration?
— How do we prefer one binary over another if metadata is arbitrary?
— What curation will still be necessary?

§ When should you rebuild instead of reusing?
— How do you quantify this decision?

Future work
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