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Software is like pond water

It is the behavior over 
time that matters
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Goals
See what every CPU core is executing every nanosecond

See for every process when it is executing and when it is blocked

See for a blocked process what it is waiting for

See interference between processes

See interference between the operating system and processes

With less than 1% overhead in a busy time-constrained system
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Kernel-User Tracing
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Kernel-User tracing
KUtrace is a software microscope that records a trace of every transition between 
kernel code and user code on every CPU core, with less than 1% overhead. 

It is implemented via a small set of Linux kernel patches that record four-byte 
transition events into a reserved kernel RAM buffer. 

Postprocessing turns raw traces into dynamic HTML timelines that you can pan 
and zoom.
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KUtrace events
Events

Each green triangle is a kernel-user transition, recorded as a 
four-byte event: 20 bits of timestamp and 12 bits of which event -- 
which syscall/return, interrupt/return, fault/return, context switch

8



Richard L. Sites 2022.06.20

KUtrace events postprocessed into timespans
Events

Timespans
thin black: idle
half height: user
full height: kernel
sine: exiting low
  power mode
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Complex Software Dynamics
Simple software: Single thread, CPU bound (e.g. benchmarks)

Complex software: Multiple threads blocking and waking each other up,
                                           interrupts, system calls, page faults
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Waiting for CPU
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Waiting for CPU
Invisible: Three threads wait on a fourth, then resume. Why longer wait?
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Waiting for CPU
Invisible: Three threads wait on a fourth, then resume. Why longer wait?

Visible: Long one is waiting almost 2 msec to get a CPU assigned
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Waiting for CPU
Invisible: Why longer wait?
Visible: Long one is waiting almost 2 msec to get a CPU assigned

 At (1), fourth thread does a write that wakes up gmain
   (Gnome display), and then restarts first three
   threads. Not enough CPUs to go around, so last
   wakeup waits. Linux scheduler fail: waits until a 
   timer interrupt 1.77 msec later to restart.
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Waiting for CPU, summary

Waiting for CPU comes from ...
● Busy CPUs
● Scheduler's too-strong affinity to task's last-used core
● Delays coming out of power-saving states
● Complex interactions between user code, kernel code, and the scheduler

Wakeup events tell us what a thread was waiting for.
KUtrace has such low overhead that it does not disturb Heisenbugs. 
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Executing Too Slowly
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Executing Too Slowly
Invisible: Two runs of same identical benchmark. Why 40% slowdown?
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Executing Too Slowly
Invisible: Two runs of same identical benchmark. Why 40% slowdown?

Visible: Some but not all loops get 35-65% slower
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Executing Too Slowly

The same code but sometimes executing slowly means that there is some form of 
interference --

which can only come from use of shared hardware resources or shared software 
critical sections.

Interference comes from what else is running.
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Executing Too Slowly
Invisible: Two runs. Why 40% slowdown?
Visible: What else is running?

The long run executes slowly because of another program. 
(Interference is at the floating divide execution unit.
  Loops m2 to m6 do not use much floating-point.) 
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Executing Too Slowly
Invisible: Two runs. Why 40% slowdown?
Visible: What else is running?

The long run executes slowly because of another program. 
When it runs, the benchmark IPC drops (speedometer triangles).
1.4x for m9 loop,       3x for m11 loop. 

21

4.0 IPC

1.0 IPC
2.0 IPC0.5 IPC

1/8 IPC



Richard L. Sites 2022.06.20

Executing Too Slowly, summary

Executing too slowly comes from ...
● Other-thread, other-program, or operating-system interference from 

use of some shared resource: CPU, memory, disk, network, locks
● Power-saving slow CPU clock frequency 
● Slow exit from power saving

Microsecond-scale IPC reveals the interference between tasks.
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Waiting for Locks
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Waiting for Locks
Invisible: Two threads wait a long time for lock; middle thread has it
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Waiting for Locks
Invisible: Two threads wait a long time for lock; middle thread has it

Visible: Middle thread re-acquires lock multiple times
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Waiting for Locks
Invisible: Middle thread starves out the others
Visible: Middle thread re-acquires lock multiple times

Each time middle thread frees the lock, it wakes up the 
other two. But before they can run, it re-acquires the lock.
Rinse and repeat ... goes on for 84 msec!
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Waiting for Locks, summary

Waiting for locks comes from
● Other threads that are holding the lock 
●   (Hint: fix those, not the waiting thread)
●   (But first you have to know which ones)

Seeing lock acquire, hold, release is important.
Recording which lock is important.
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The Knuth Challenge
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Make a thorough analysis of everything your 
computer does during one second of 

computation. -- Don Knuth 1989
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The Knuth Challenge
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Make a thorough analysis of everything your 
computer does during one second of 

computation. -- Don Knuth 1989

"Sites and KUtrace met my 33-year-old one-second Challenge"
-- Don Knuth, March 2022
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Overall Summary
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Summary
See what every CPU core is executing every nanosecond

See for every process when it is executing and when it is blocked

See for a blocked process what it is waiting for

See interference between processes

See interference between the operating system and processes

With less than 1% overhead in a busy time-constrained system

KUtrace does all this                         
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  Addison-Wesley 2022

Patches for AMD x86, Intel x86, ARM 64-bit (RPi-4B), 
RISC-V, plus postprocessing code, book code, book HTML:
  github.com/dicksites/kutrace

Longer talk, Stanford EE380, March 2022 (Knuth comment at 1:10:00):
  https://www.youtube.com/watch?v=D_qRuKO9qzM
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