
Richard L. Sites 2022.06.20

A Software Microscope

Dick Sites
Scalable Tools Workshop

June 2022

Richard L. Sites 2022.06.20

Talk outline
Goals
Kernel-User tracing
Complex software

Example: waiting for CPU
Example: Executing too slowly
Example: Waiting for locks

The Knuth challenge
Summary

2

Richard L. Sites 2022.06.20

Software is like pond water

It is the behavior over
time that matters

3

Richard L. Sites 2022.06.20

Goals
See what every CPU core is executing every nanosecond

See for every process when it is executing and when it is blocked

See for a blocked process what it is waiting for

See interference between processes

See interference between the operating system and processes

With less than 1% overhead in a busy time-constrained system

4

Richard L. Sites 2022.06.20

Kernel-User Tracing

Richard L. Sites 2022.06.20

Kernel-User tracing
KUtrace is a software microscope that records a trace of every transition between
kernel code and user code on every CPU core, with less than 1% overhead.

It is implemented via a small set of Linux kernel patches that record four-byte
transition events into a reserved kernel RAM buffer.

Postprocessing turns raw traces into dynamic HTML timelines that you can pan
and zoom.

6

Richard L. Sites 2022.06.20

syscall, interrupt,
trap, context switch

User
codeUser

codeUser
code

Linux
Kernel

trace
mod

trace buffer in kernel RAM

post-
proc.

control
on/off/

etc.

7

Richard L. Sites 2022.06.20

KUtrace events
Events

Each green triangle is a kernel-user transition, recorded as a
four-byte event: 20 bits of timestamp and 12 bits of which event --
which syscall/return, interrupt/return, fault/return, context switch

8

Richard L. Sites 2022.06.20

KUtrace events postprocessed into timespans
Events

Timespans
thin black: idle
half height: user
full height: kernel
sine: exiting low
 power mode

9

Richard L. Sites 2022.06.20

Complex Software Dynamics
Simple software: Single thread, CPU bound (e.g. benchmarks)

Complex software: Multiple threads blocking and waking each other up,
 interrupts, system calls, page faults

10

Richard L. Sites 2022.06.20

Waiting for CPU

Richard L. Sites 2022.06.20

Waiting for CPU
Invisible: Three threads wait on a fourth, then resume. Why longer wait?

12

Richard L. Sites 2022.06.20

Waiting for CPU
Invisible: Three threads wait on a fourth, then resume. Why longer wait?

Visible: Long one is waiting almost 2 msec to get a CPU assigned

13

Richard L. Sites 2022.06.20

Waiting for CPU
Invisible: Why longer wait?
Visible: Long one is waiting almost 2 msec to get a CPU assigned

 At (1), fourth thread does a write that wakes up gmain
 (Gnome display), and then restarts first three
 threads. Not enough CPUs to go around, so last
 wakeup waits. Linux scheduler fail: waits until a
 timer interrupt 1.77 msec later to restart.

14

Richard L. Sites 2022.06.20

Waiting for CPU, summary

Waiting for CPU comes from ...
● Busy CPUs
● Scheduler's too-strong affinity to task's last-used core
● Delays coming out of power-saving states
● Complex interactions between user code, kernel code, and the scheduler

Wakeup events tell us what a thread was waiting for.
KUtrace has such low overhead that it does not disturb Heisenbugs.

15

Richard L. Sites 2022.06.20

Executing Too Slowly

Richard L. Sites 2022.06.20

Executing Too Slowly
Invisible: Two runs of same identical benchmark. Why 40% slowdown?

17

Richard L. Sites 2022.06.20

Executing Too Slowly
Invisible: Two runs of same identical benchmark. Why 40% slowdown?

Visible: Some but not all loops get 35-65% slower

18

Richard L. Sites 2022.06.20

Executing Too Slowly

The same code but sometimes executing slowly means that there is some form of
interference --

which can only come from use of shared hardware resources or shared software
critical sections.

Interference comes from what else is running.

19

Richard L. Sites 2022.06.20

Executing Too Slowly
Invisible: Two runs. Why 40% slowdown?
Visible: What else is running?

The long run executes slowly because of another program.
(Interference is at the floating divide execution unit.
 Loops m2 to m6 do not use much floating-point.)

20

Richard L. Sites 2022.06.20

Executing Too Slowly
Invisible: Two runs. Why 40% slowdown?
Visible: What else is running?

The long run executes slowly because of another program.
When it runs, the benchmark IPC drops (speedometer triangles).
1.4x for m9 loop, 3x for m11 loop.

21

4.0 IPC

1.0 IPC
2.0 IPC0.5 IPC

1/8 IPC

Richard L. Sites 2022.06.20

Executing Too Slowly, summary

Executing too slowly comes from ...
● Other-thread, other-program, or operating-system interference from

use of some shared resource: CPU, memory, disk, network, locks
● Power-saving slow CPU clock frequency
● Slow exit from power saving

Microsecond-scale IPC reveals the interference between tasks.

22

Richard L. Sites 2022.06.20

Waiting for Locks

Richard L. Sites 2022.06.20

Waiting for Locks
Invisible: Two threads wait a long time for lock; middle thread has it

24

Richard L. Sites 2022.06.20

Waiting for Locks
Invisible: Two threads wait a long time for lock; middle thread has it

Visible: Middle thread re-acquires lock multiple times

25

Richard L. Sites 2022.06.20

Waiting for Locks
Invisible: Middle thread starves out the others
Visible: Middle thread re-acquires lock multiple times

Each time middle thread frees the lock, it wakes up the
other two. But before they can run, it re-acquires the lock.
Rinse and repeat ... goes on for 84 msec!

26

Richard L. Sites 2022.06.20

Waiting for Locks, summary

Waiting for locks comes from
● Other threads that are holding the lock
● (Hint: fix those, not the waiting thread)
● (But first you have to know which ones)

Seeing lock acquire, hold, release is important.
Recording which lock is important.

27

Richard L. Sites 2022.06.20

The Knuth Challenge

28

Make a thorough analysis of everything your
computer does during one second of

computation. -- Don Knuth 1989

Richard L. Sites 2022.06.20

The Knuth Challenge

29

Make a thorough analysis of everything your
computer does during one second of

computation. -- Don Knuth 1989

"Sites and KUtrace met my 33-year-old one-second Challenge"
-- Don Knuth, March 2022

Richard L. Sites 2022.06.20

Overall Summary

30

Richard L. Sites 2022.06.20

Summary
See what every CPU core is executing every nanosecond

See for every process when it is executing and when it is blocked

See for a blocked process what it is waiting for

See interference between processes

See interference between the operating system and processes

With less than 1% overhead in a busy time-constrained system

KUtrace does all this

31

Richard L. Sites 2022.06.20

References
Book:
 Richard L. Sites, Understanding Software Dynamics,
 Addison-Wesley 2022

Patches for AMD x86, Intel x86, ARM 64-bit (RPi-4B),
RISC-V, plus postprocessing code, book code, book HTML:
 github.com/dicksites/kutrace

Longer talk, Stanford EE380, March 2022 (Knuth comment at 1:10:00):
 https://www.youtube.com/watch?v=D_qRuKO9qzM

32

Order & Save 35%*
on Book or eBook at
informit.com/dsites
• Use code DSITES during checkout
• Offer only good at informit.com
• Free U.S. shipping
• eBook – DRM-Free PDF, EPUB, & MOBI files

Also Available
Booksellers including Amazon and bn.com, and in O’Reilly’s
Online Learning subscription service (aka Safari).

*Discount code DSITES is only good at informit.com and cannot be used on the
already discounted book + eBook bundle or combined with any other offer.

**Outside the U.S. print books. Please check your local or online store where you
purchase technical related books. If your order print books from InformIT, your
order is subject to import duties and taxes, which are levied once the package
reaches the destination country.

*

