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sys-sage

- Software library with a (C++) APl to query system topology information
» Currently under development

 Core functionality implemented

- More data collection and functionality under development

Main goal: Store, update, and provide all relevant information about
- Hardware topology,

- Dynamic system state/configuration,

- System capabilities, and

 Other data related to HW

from different data sources logically connected to each other.



sys-sage Vvs. hwloc

Extension to hwloc (hwloc is not a mandatory part)

hwloc is limited to:
- Static data (only given HW topology)
— Modern systems are not strictly hierarchical anymore
— Information regarding data movement capabilities is missing
» Mainly CPU-centric

» Difficult to incorporate complementary information
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Application

hwloc

sys-sage serves as a backend for HW-related-data
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Internal representation logically connects information from different sources




What sys-sage Addresses

1. Dynamic aspects of modern HPC systems
- Data movement information
» Variable system characteristics
2. Support of heterogeneous components
- CPU, GPU (more to come)
» Interconnects / buses connecting the components
3. High variability
» Different set of information needed in different use-cases
» Arbitrary data can be added to already existing representation

* Sys-sage can store/maintain/provide arbitrary information out-of-the-box



Possible Areas of Usage

» Job / thread scheduling, co-scheduling multiple applications

» Autotuning tasks / applications

- Data management on heterogeneous memory systems (allocation decisions)
» Power management

» Performance optimization, performance modelling tools
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- default data source :

Available Data (more to come)

/- Uploading HWIloc Topology output

<+—+ NUMA memory and cache bandwidth/latency benchmark
_§ Cache-partitioning aware available L3 cache size

' PCle bandwidth+latency (WIP)

» GPU HW topology information (WIP)

¥——— ...any custom piece of information may be added using the API
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Representation of an HPC System

» 2 main concepts
« Component Tree

- Data-path Graph
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Representation of an HPC System

Component Tree

Composed of Components

Hierarchical representation (hwloc)

Easy orientation

Components contain rather static

information (id, size, attributes)

No restrictions on the hierarchy / Component

Types

Various Component Types:

— Topology (root)
- Node

— Chip (socket)
— Subdivision

- NUMA

— Cache

- Core

— Thread (PU)

- Memory

- Storage
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Representation of an HPC System

Data-path graph

» Connects two arbitrary Components
 Utilizes the Component Tree elements
» Mainly dynamic information
» Data-paths may contain arbitrary information
— bandwidth, latency
— cache partitioning settings

— PEBS memory samples
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Representation of an HPC System

Component Tree Data-path Graph
» Hierarchical representation (hwloc) » Connects two arbitrary Components
- Mandatory structure » Orthogonal to the Component Tree
» Components contain rather static » Optional
information (id, size, attributes) » EXxpresses relation of 2 HW elements
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Use-case 1: MemAXxes
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* Visualize data access characteristics

» Grouping PEBS samples by core and cache/NUMA region
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« Component Tree from hwloc

77
I
Lx

\>

il
N

» Contains CPU cores+caches+NUMA regions
» Used by MemAXxes for a system visualization
» (WIP) Represent memory samples as Data Path objects
» source: cache/NUMA region that provided the data
» target: issuing core
- all sample data stored in the Data Path as well

» (latency, source code line, timestamp,...)



Use-case 2: Cache Partitioning

 Retrieving the available L3 cache size for each core

» A core may have access only to subset of L3 (different subset for each core possible)

- “Static” hwloc total L3 size not valid anymore

« Component Tree from hwloc

» Contains CPU HW topology (cores+caches+sockets...)
» L3 cache partitioning as Data Paths

e source: each core

way #

» target: L3 cache core 1
. core 2

» store # of open cache ways for given core core 3
core 4

w calculate available cache size

LLC
12345678

COSO0
COS 1
COS 2
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Some More Possible Use-cases...

- Compare on-node characteristics within a multi-node system to find outliers
» Map OMP threads / tasks to HW threads

 This will help connect HW samples / counters to SW threads

» Use sys-sage to decide where to allocate compute- and memory intensive threads

» Even threads within a NUMA region have different characteristics

 Use autotuning strategies to optimize application performance on given node using data

stored in sys-sage

* e.g. react to different cache prefetching strategies
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sys-sage

Check the GitHub repo:

https://github.com/stepanvanecek/sys-sage

Install with spack:
spack install sys-sage
Get in touch with us:
stepan.vanecek@tum.de

martin.w.j.schulz@tum.de
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