sys-sage
A library for capturing HPC systems' topology and attributes

Stepan Vanecek

stepan.vanecek@tum.de

Research Group Prof. Martin Schulz
Chair of Computer Architecture and Parallel Systems

Technical University of Munich

Scalable Tools Workshop 2022, 20.06.2022

sys-sage

- Software library with a (C++) APl to query system topology information
» Currently under development

 Core functionality implemented

- More data collection and functionality under development

Main goal: Store, update, and provide all relevant information about
- Hardware topology,

- Dynamic system state/configuration,

- System capabilities, and

 Other data related to HW

from different data sources logically connected to each other.

sys-sage Vvs. hwloc

Extension to hwloc (hwloc is not a mandatory part)

hwloc is limited to:
- Static data (only given HW topology)
— Modern systems are not strictly hierarchical anymore
— Information regarding data movement capabilities is missing
» Mainly CPU-centric

» Difficult to incorporate complementary information

Application

hwloc

—/

N

Integration

Reflecting
dynamic
aspects

g system 3 (. h
Y . benchmark
configuration
data results
_ _J U Yy,

Dynamic
changes
or data

Application

hwloc

Integration

—/

N

~ ™
system
configuration
L data y

(

N

benchmark

-

results

Reflecting
dynamic
aspects

Application

_single interface

_J

Dynamic
changes
or data

sys-sage
g system 3 (A Dvnamic

Y . benchmark y
hwloc configuration results changes
L data)L) or data

Application

hwloc

sys-sage serves as a backend for HW-related-data

Integration

—/

N

f

.

system

data

\

configuration

_/

(

N

benchmark

-

results

Reflecting
dynamic

aspects

Application

_single interface

_J

)

Dynamic
changes
or data

sys-sage
g system 3 (A Dvnamic

Y . benchmark y
hwloc configuration results changes
L data)L) or data

Internal representation logically connects information from different sources

What sys-sage Addresses

1. Dynamic aspects of modern HPC systems
- Data movement information
» Variable system characteristics
2. Support of heterogeneous components
- CPU, GPU (more to come)
» Interconnects / buses connecting the components
3. High variability
» Different set of information needed in different use-cases
» Arbitrary data can be added to already existing representation

* Sys-sage can store/maintain/provide arbitrary information out-of-the-box

Possible Areas of Usage

» Job / thread scheduling, co-scheduling multiple applications

» Autotuning tasks / applications

- Data management on heterogeneous memory systems (allocation decisions)
» Power management

» Performance optimization, performance modelling tools

data source

lllllllllllll

data-source-1

data-source-2

custom data
source

custom-data-
source node 1

additional-info

lllllllllllll

data source

lllllllllllll

data-source-1

data-source-2

custom data
source

. custom-data-
' source node 1

additional-info

lllllllllllll

- default data source :

Available Data (more to come)

/- Uploading HWIloc Topology output

<+—+ NUMA memory and cache bandwidth/latency benchmark
_§ Cache-partitioning aware available L3 cache size

' PCle bandwidth+latency (WIP)

» GPU HW topology information (WIP)

¥——— ...any custom piece of information may be added using the API

10

data source input parsers Z sys-sage Library
R _ : : .
' - default data source - | default parsers L internal representation
. - * upload
3 data-source-1 : parse-ds-1 Z daata -> component tree -> data-path graph
: data-source-2] parse-ds-2 . = :
I ' . <C
______________ g _ A \1
customdata custom < . g
source . parsers : e
" | custom-parse-ds-1 upload R T YA S ji% Y
custom-data- : N Ea:ti
source node 1 : parse-custom-ds
additional-info © |parse-additional-info * sys-sage API Output API
........... ‘ N | ..
\ Modifying dynamic Retrieving stored
v information information
\
8

core functionality 3 N~
- - Application

Representation of an HPC System

» 2 main concepts
« Component Tree

- Data-path Graph

12

Representation of an HPC System

Component Tree

Composed of Components

Hierarchical representation (hwloc)

Easy orientation

Components contain rather static

information (id, size, attributes)

No restrictions on the hierarchy / Component

Types

Various Component Types:

— Topology (root)
- Node

— Chip (socket)
— Subdivision

- NUMA

— Cache

- Core

— Thread (PU)

- Memory

- Storage

13

Representation of an HPC System

Data-path graph

» Connects two arbitrary Components
 Utilizes the Component Tree elements
» Mainly dynamic information
» Data-paths may contain arbitrary information
— bandwidth, latency
— cache partitioning settings

— PEBS memory samples

14

Representation of an HPC System

Component Tree Data-path Graph
» Hierarchical representation (hwloc) » Connects two arbitrary Components
- Mandatory structure » Orthogonal to the Component Tree
» Components contain rather static » Optional
information (id, size, attributes) » EXxpresses relation of 2 HW elements

\-

W _

[2\ [2\

Use-case 1: MemAXxes

i
)

N
)

X
=

* Visualize data access characteristics

» Grouping PEBS samples by core and cache/NUMA region

=
)=

« Component Tree from hwloc

77
I
Lx

\>

il
N

» Contains CPU cores+caches+NUMA regions
» Used by MemAXxes for a system visualization
» (WIP) Represent memory samples as Data Path objects
» source: cache/NUMA region that provided the data
» target: issuing core
- all sample data stored in the Data Path as well

» (latency, source code line, timestamp,...)

Use-case 2: Cache Partitioning

 Retrieving the available L3 cache size for each core

» A core may have access only to subset of L3 (different subset for each core possible)

- “Static” hwloc total L3 size not valid anymore

« Component Tree from hwloc

» Contains CPU HW topology (cores+caches+sockets...)
» L3 cache partitioning as Data Paths

e source: each core

way #

» target: L3 cache core 1
. core 2

» store # of open cache ways for given core core 3
core 4

w calculate available cache size

LLC
12345678

COSO0
COS 1
COS 2

17

Some More Possible Use-cases...

- Compare on-node characteristics within a multi-node system to find outliers
» Map OMP threads / tasks to HW threads

 This will help connect HW samples / counters to SW threads

» Use sys-sage to decide where to allocate compute- and memory intensive threads

» Even threads within a NUMA region have different characteristics

 Use autotuning strategies to optimize application performance on given node using data

stored in sys-sage

* e.g. react to different cache prefetching strategies

18

sys-sage

Check the GitHub repo:

https://github.com/stepanvanecek/sys-sage

Install with spack:
spack install sys-sage
Get in touch with us:
stepan.vanecek@tum.de

martin.w.j.schulz@tum.de

Acknowledgements:

* X % SPONSORED BY THE

* *

* * ..

X * % Federal Ministry
AR of Education

DEEP-SEA and Research

EU Grant #955606
BMBF #16HPC014

19

https://github.com/stepanvanecek/sys-sage
mailto:stepan.vanecek@tum.de
mailto:martin.w.j.schulz@tum.de

