Possible Malleability Support in MPI 5:

What Does it Mean for (MPI) Tools?

Martin Schulz

Chair for Computer Architecture and Parallel Systems
Technical University of Munich (TUM)

Scalable Tools Workshop 2022

Monday June 20th, 2022

Possible Malleability Support in MPI 5 T

(and all the other stuff the MPI Forum is cooking up):

What Does it Mean for (MPI) Tools?

1| .

| LT

Martin Schulz -
B e A
Chair for Computer Architecture and Parallel Systems ,@ | @ @I‘
Technical University of Munich (TUM) [=
M | |

Scalable Tools Workshop 2022 ﬂ:{ﬁ Sas 3
Monday June 20th, 2022 [1

Overview of (some) items in MPI that will affect tools TLITI

MPI 4.0 introduced MPI Sessions

— Dynamic initialization and finalization
— Resource isolation

Plans for MPI 5.0 include support for malleability
— Based on the MPI Sessions model
— Changing resource availability and usage on the fly

Other MPI features

— Fault tolerance
— Partitioned communication and accelerator bindings
— Continuations

Finally, perhaps some good news: QMPI

MPI| Sessions

Instead of MPI_Init / MPI_COMM_WORLD:

1. Get local access to the MPI library MP| Session
Get a Session Handle _

2. Query the underlying run-time system Set of processes
Get a “set” of processes

3. Determine the processes you want
Create an MPI_Group

4. Create a communicator with just those processes
Create an MPI_Comm

Never mix handles derived from two sessions in any call!

MPI| Sessions

What does this do?
— Deliver runtime information to the MPI library @

— Enable resource isolation between sessions HOW
— Eliminate the static resource MPI_COMM_WORLD
WHAT

Where do Process Sets Come From?
— Two predefined sets: mpi://WORLD and mpi://SELF
— Runtimes can provide system configurations, like location://rack/17

— Users can specify process sets, like app://ocean

Intended Usage Patterns
— Scalable initialization on subsets of processes

— Separate library initialization
— Separation of application components (ice, ocean, atmosphere, ...)

Consequences TUTI
No MPI_COMM_WORLD (potentially, ever) “\M

— Applications do not have to call MPI_Init

— No longer the first call that can be intercepted N

— More calls allowed before MPI_Init ‘//) ﬁ\ /
— Applications can call MPIl_Session_init multiple times

— Every session can have different process sets
— Even mpi://WORLD can be different

Tools need to track all Session initializations and finalizations
— May have to deal with re-initializations
— Can only rely on communicators derived from particular process sets
— Have to obey the rule of not mixing handles from multiple sessions
— Will be hard to impossible to create a global communicator

Advantages: Tools can utilize separate/isolated sessions themselves

PMPI and MPI Sessions Tum

MPI Session calls can be tracked with PMPI

— Standard interception possible
— Can influence thread levels, if needed

Currently: single PMPI tool stack across all MPI Sessions

— Tools need to keep track of session handles and associations
— Forum is considering a query Session ID procedure — helpful?
— Tool invocations may not make sense in the calling context

Is this the right model?

— Or should there be a tool(stack) per session

— If so, how to specify the tool? @ GZ‘} ®
— How to name/associate the sessions? N
— Or should there for be a different model? YOUR FEEDBACK

MATTERS

— Do we need other routines?

Malleability on top of MP| Sessions TUM

Enables path from the runtime to the application
— Runtime can add new process sets in a session (possibly with versioning)
— New sessions can have new process set lists (arguments at session start)

MPI Forum working on APIs to provide handshake
— Detection of new resources
— Negotiations for and acceptance of new resources |

Connection to fault tolerance proposals
— Set of sessions from multiple processes can form a transitive “bubble’
— Bubbles can be seen as inherent fault domains (connection to FT)

Should maintain MPI look & feel

EuroHPC Time-X: Weather and climate TUTI

Exploit malleable MPI to support varying Each column represents a parallel-in-time
resources ‘for parallel-in-time applications simulation instance for a particular time interval
— Vary number of parallel steps
— Based on efficiency predictions
— Based on resource availability

Total Time

Key design points
— Who triggers malleability?
— Cost model

Total Time

Py P P, P Py Ps

Support removing time-parallel simulation

EU Grant #955701 instances (top) or adding them (bottom)
BMBF #16HPCO050 9

Impact of Malleability TUM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | Resource Change: Add {1,13}

1 2 3 4 5 6 It 8 9 10 11 12 13 14 15 | Resource Change: Add {6}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | Resource Change: Remove {1,4}

1 2 3 4 5 6 7t 8 9 10 11 12 13 14 15 | Resource Change: Add {15}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | Resource Change: Remove {5,12,13}

1 2 3 4 5 6 i 8 9 10 11 12 13 14 15 | Resource Change: Add {1,213}

 Resources can come and go
« Final set can be completely different than starting
« But: negotiation routines can be intercepted

From: Jan Fecht, TUM — published at HPCMALL 2022

Example API

Resource Changes

 Resource Change = new process set +
resource change type

* The application:
1. polls for a resource change
2. does load balancing
3. accepts the resource change

* Optional info object for passing
information to new processes

From: Jan Fecht, TUM — published at HPCMALL 2022

TUTI

int MPIDYNRES_RC_get (

);

MPI_Session session,
MPIDYNRES_RC_type *o_rc_type,
char o_diff_pset_name[],
MPIDYNRES_RC_tag *o_tag,
MPI_Info *o_info

int MPIDYNRES_RC_accept(

)i

MPI_Session session,
MPIDYNRES_RC_tag i_tag,
MPI_Info i_info

Example for Malleability TUM

- inactive running — running, marked for removal = = inactive, marked for start
P, e e e R S e e e e
P2 - (] R --ooooooneee e (}----=-----]-=-=--=-=--- — K-
P3 - X-----
2 X-----
PE - X-----
PB -r-eroe oo E ———————————————————— — X -
A e e L R R R Jemeecmnen- — X------
i - set operation: difference set operation: union o s
main thoftest set resourF:e chanlge. {ng3 P4,P5}, (P2} change accepted: ~ resource change: 3 p4pp5} (P2,P6,P7} change accepted: Application is
is started: type: (emova _>'Ne;/v rﬁain ’set' {P2} is removed type: addition _‘> r\iew ;nain'set" {P2,P6,P7} are done, processes
{P2,P3,P4,P5} set: {P2} : set: {P2,P6,P7) ' started shut down

{P3,P4,P5} {P2,P3,P4,P5,P6,P7}

Creation of new Psets

* New routines are an option for this @ @ @

Processes come and go
* Need to intercept “adjustment phase” YOUR FEEDBACK
* Need to see if application accepts the changes MATTERS

From: Jan Fecht, TUM — published at HPCMALL 2022

A different view on Malleability: Fault Tolerance TUM

MPI Forum is making a push (again) for fault tolerance
— Multiple options/models on the table, tools will have to track that
— Implicitly changes to set of processes of applications
— Already changes to error handling to allow for continued execution

Coarse-grained Recovery (Reinit)

g \60) Q(" %({9 . OQ'\« . o(\q/
&) ¢ O &
\) \oe 0 *’b (b
N (®) g\\ g\\
<° «° & 30 ©
&) > &)
% ¢ N <& < N

Resources allocated

I I
Checkpoint stored Checkpoint stored

Program data initialized

I I
I I
I I
I I
I MPI is setup d MPI state is created,
: : e.g., communicators
I I
N Recovery time :
Traditional
CPR :
I
:Recover time
A
I
|

Reinit
Recovery

From: Ignacio Laguna, LLNL

A different view on Malleability: Fault Tolerance

MPI Forum is making a push (again) for fault tolerance
— Multiple options/models on the table, tools will have to track that
— Implicitly changes to set of processes of applications
— Already changes to error handling to allow for continued execution

Option 1: Coarse-Grained Recovery (“Reinit” proposal)
— On failure in the system, automatic jump to start of main / No finalize
— Processes will be re-used so that data can be maintained
— But some processes may be restarted from scratch
— All MPI state is lost and has to be rebuilt (including tool state!)

ULFM MPI Crash Recovery

« Some applications can continue w/o recovery
« Some applications are malleable

* Shrink creates a new, smaller communicator on which collectives

work

« Some applications are not malleable

« Spawn can recreate a “same size” communicator

» Itis easy to reorder the ranks according to the original ordering

* Pre-made code snippets available

Failure Notification
Error Propagation
Error Recovery
* Respawn of nodes
« Dataset restoration

From: Aurelien Bouteiller, UTK

Not all recovery strategies
require all of these
features,

that’s why the interface
should split notification,
propagation and recovery.

Who should be notified of a failure?
What is the scope of a failure?
What actions should be taken?

TUTI

Adds 3 error codes and 5
functions to manage process
crash

Error codes: interrupt
operations that may block due
to process crash
MPI_COMM_FAILURE_ACK /
GET_ACKED: continued
operation with ANY-SOURCE
RECV and observation known
failures

MPI_COMM_REVOKE lets
applications interrupt
operations on a communicator
MPI_COMM_AGREE:
synchronize failure knowledge
in the application
MPI_COMM_SHRINK: create a
communicator excluding failed
processes

More info on the MPI Forum
ticket #20:

h ://github.com/mpi-
forum/mpi-i i 2

A different view on Malleability: Fault Tolerance

MPI Forum is making a push (again) for fault tolerance
— Multiple options/models on the table, tools will have to track that
— Implicitly changes to set of processes of applications
— Already changes to error handling to allow for continued execution

Option 1: Coarse-Grained Recovery (“Reinit” proposal)
— On failure in the system, automatic jump to start of main / No finalize
— Processes will be re-used so that data can be maintained
— But some processes may be restarted from scratch
— All MPI state is lost has to be rebuilt (including tool state!)

Option 2: Fine-Grained Recovery (“ULFM” proposal)
— Contiued, but limited operation after failure
— Tools would have to follow same limitations (and not change the state!)
— Communicator can be revoked, shrunk and deleted/replaced
— Mechanisms built on top of ULFM may need PMPI

And Now to Something Completely Different!

Partitioned Communication (MPI| 4.0)

MPI_Psend_init(..., &request);

for (...) {
MPI_Start(&request);
#pragma omp parallel

{

Thread:

kernel(..., MPI_Request request) {
int i = my_partition[my_id];
/* Compute and fill partition i then mark ready: */
kernel(..., request); NN

MPI_Pready(i, request);
}

3
MPI_Wait(&request);

}
MPI_Request_free(&request);

Next steps:
_ Collective versions for partitioned communication

Current extension proposals focus on accelerators
- Optimizations to ensure buffers are “ready”
- Bindings should allow exection from the accelerator

Accelerator Bindings for MPI Partitioned APIs m

CUDA and SYCL Language Bindings Under Exploration

int MPI_Psend_init(const void *buf, int partitions, MPI_Count count,
MPI_Datatype datatype, int dest, int tag, MPI_Comm comm, MPI_Info info,
MPI_Request *request)

int MPIl_Precv_init(void *buf, int partitions, MPI_Count count,
MPI_Datatype datatype, int source, int tag, MPI_Comm comm, MPI_Info info,
MPI_Request *request)

int MPI_[start,wait][_all](...) Keebp host onl
__device__ int MPI_Pready(int partition, MPI_Request request) Add device
__device___int MPI_Pready_range(int partition_low, int partition_high, MPI_Request request) blnd/ngs

__device__int MPI_Pready_list(int length, const int array_of_partitions[], MPI_Request request)

__device___int MPI_Parrived(MPI_Request request, int partition, int *flag)

9O

Interception options unclear
 Does PMPI work on this and, if so, how? Do we need it? Yﬂl"l FEEDBACK
« How would this impact tools for other functions (e.g., RMA Put/Get)? MATTE“S

From: Work by Jim Dinan, NVIDIA and Maria Garzaran, Intel

MPI| Continuations

Opening Up MPI for Hybrid Runtimes

Several Proposals for Continuations
— Treat the completion of an MPI operation as continuation of some activity
— Ability to couple with OpenMP events and dependencies

Proposal for Thread Continuations

status, *data)

value; event = (omp event handle t)(

(event) -
2vent);

MPI Irecv(&value, ..., &req);

”

“Callback-based completion notification using MPI Continuations,
Joseph Schuchart, Christoph Niethammer, José Gracia, George Bosilca, Parallel Computing, 2021.

“MPI Detach - Asynchronous Local Completion,”
Joachim Protze, Marc-André Hermanns, Ali Demiralp, Matthias S. Mduller, Torsten Kuhlen. EuroMPI ‘20.

MPI Continuations Tum

Opening Up MPI for Hybrid Runtimes

Several Proposals for Continuations
— Treat the completion of an MPI operation as continuation of some activity
— Ability to couple with OpenMP events and dependencies

Consequences for Tools
— Must track MPI and OpenMP
— Request tracking needs new approach
— May need wrapping of callback function (limitations tbd.)

©OE

YOUR FEEDBACK

MATTERS

Good News (hopefully ©): QMPI is Making Progress ~ TUTI

Replacement idea for PMPI

Comm.
- Multiple intercepts Optlmuzauon‘—]

- Runtime loading [_,
- Options for user vs. system tools e)
Applcation C—) System Monitor <€ 'I\'/IIEI
Status - J
- Initial PMPI prototype
(WorkS on any MP') C—) Runtime Tuner €—— >
- Text proposal almost complete A MP| * PP A
~ Prototype in MPICH available N S APL 5
- Open questions tune |
- Tool specification at runtime @ Q\}
- How to deal with PMPI in transition period YOUR FEEEIBAGI(

~ Long term: dynamic tool loading MATTEBS
)

From: Bengisu Elis, TUM — published at EuroMPI 2019, MPICH Implementation by Wesley Bland when at Intel (now Meta

MPI is Changing and Tools will Need to Adapt TLTI

Sessions change process tracking
- No global process set is guaranteed
- Process sets can change

Malleability > Dynamic Tools
- Track process sets even within sessions
- Capture negotiations with runtime
- Match adjustment phases of apps
- Fault tolerance complicates things

Other new features likely on the way
- Accelerator bindings
(especially for partitioned communication)
- Push towards hybrid runtimes

QMPI is making progress

' M PI www.mpi-forum.org

SPONSORED BY THE

% Federal Ministry
N of Education
DEEP-SEA TIME-X REGALE and Research

EU Grant #955606 EU Grant #955701 EU Grant #956560
BMBF #16HPC014 BMBF #16HPC050 BMBF #16HPC039K

http://www.mpi-forum.org/

