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Overview of (some) items in MPI that will affect tools

MPI 4.0 introduced MPI Sessions
- Dynamic initialization and finalization
- Resource isolation

Plans for MPI 5.0 include support for malleability
- Based on the MPI Sessions model
- Changing resource availability and usage on the fly

Other MPI features
- Fault tolerance
- Partitioned communication and accelerator bindings
- Continuations

Finally, perhaps some good news: QMPI



MPI Sessions 

Instead of MPI_Init / MPI_COMM_WORLD:

1. Get local access to the MPI library
Get a Session Handle

2. Query the underlying run-time system
Get a “set” of processes

3. Determine the processes you want
Create an MPI_Group

4. Create a communicator with just those processes
Create an MPI_Comm

Never mix handles derived from two sessions in any call!

MPI_Session

Set of processes

MPI_Group

MPI_Comm



MPI Sessions 

What does this do?
- Deliver runtime information to the MPI library
- Enable resource isolation between sessions
- Eliminate the static resource MPI_COMM_WORLD

Where do Process Sets Come From?
- Two predefined sets: mpi://WORLD and mpi://SELF
- Runtimes can provide system configurations, like location://rack/17
- Users can specify process sets, like app://ocean

Intended Usage Patterns
- Scalable initialization on subsets of processes
- Separate library initialization
- Separation of application components (ice, ocean, atmosphere, …)



Consequences

No MPI_COMM_WORLD (potentially, ever)
- Applications do not have to call MPI_Init
- No longer the first call that can be intercepted
- More calls allowed before MPI_Init

- Applications can call MPI_Session_init multiple times
- Every session can have different process sets 
- Even mpi://WORLD can be different

Tools need to track all Session initializations and finalizations
- May have to deal with re-initializations 
- Can only rely on communicators derived from particular process sets
- Have to obey the rule of not mixing handles from multiple sessions
- Will be hard to impossible to create a global communicator

Advantages: Tools can utilize separate/isolated sessions themselves



PMPI and MPI Sessions

MPI Session calls can be tracked with PMPI
- Standard interception possible
- Can influence thread levels, if needed

Currently: single PMPI tool stack across all MPI Sessions
- Tools need to keep track of session handles and associations
- Forum is considering a query Session ID procedure – helpful?

- Tool invocations may not make sense in the calling context

Is this the right model?
- Or should there be a tool(stack) per session
- If so, how to specify the tool?
- How to name/associate the sessions?

- Or should there for be a different model?

- Do we need other routines?



Malleability on top of MPI Sessions

Enables path from the runtime to the application
- Runtime can add new process sets in a session (possibly with versioning)
- New sessions can have new process set lists (arguments at session start)

MPI Forum working on APIs to provide handshake
- Detection of new resources
- Negotiations for and acceptance of new resources

Connection to fault tolerance proposals
- Set of sessions from multiple processes can form a transitive “bubble”
- Bubbles can be seen as inherent fault domains (connection to FT)

Should maintain MPI look & feel



EuroHPC Time-X: Weather and climate [1]

9

Exploit malleable MPI to support varying 
resources ‘for parallel-in-time applications
- Vary number of parallel steps
- Based on efficiency predictions
- Based on resource availability

Key design points
- Who triggers malleability?
- Cost model

Support removing time-parallel simulation 
instances (top) or adding them (bottom)

Each column represents a parallel-in-time 
simulation instance for a particular time interval

EU Grant #955701
BMBF #16HPC050



Impact of Malleability

• Resources can come and go
• Final set can be completely different than starting
• But: negotiation routines can be intercepted

From: Jan Fecht, TUM – published at HPCMALL 2022



Example API

From: Jan Fecht, TUM – published at HPCMALL 2022



Example for Malleability

Creation of new Psets
• New routines are an option for this

Processes come and go
• Need to intercept “adjustment phase”
• Need to see if application accepts the changes

From: Jan Fecht, TUM – published at HPCMALL 2022



A different view on Malleability: Fault Tolerance

MPI Forum is making a push (again) for fault tolerance
- Multiple options/models on the table, tools will have to track that
- Implicitly changes to set of processes of applications
- Already changes to error handling to allow for continued execution
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A different view on Malleability: Fault Tolerance

MPI Forum is making a push (again) for fault tolerance
- Multiple options/models on the table, tools will have to track that
- Implicitly changes to set of processes of applications
- Already changes to error handling to allow for continued execution

Option 1: Coarse-Grained Recovery (“Reinit” proposal)
- On failure in the system, automatic jump to start of main / No finalize
- Processes will be re-used so that data can be maintained
- But some processes may be restarted from scratch
- All MPI state is lost and has to be rebuilt (including tool state!)



From: Aurelien Bouteiller, UTK



A different view on Malleability: Fault Tolerance

MPI Forum is making a push (again) for fault tolerance
- Multiple options/models on the table, tools will have to track that
- Implicitly changes to set of processes of applications
- Already changes to error handling to allow for continued execution

Option 1: Coarse-Grained Recovery (“Reinit” proposal)
- On failure in the system, automatic jump to start of main / No finalize
- Processes will be re-used so that data can be maintained
- But some processes may be restarted from scratch
- All MPI state is lost has to be rebuilt (including tool state!)

Option 2: Fine-Grained Recovery (“ULFM” proposal)
- Contiued, but limited operation after failure
- Tools would have to follow same limitations (and not change the state!)
- Communicator can be revoked, shrunk and deleted/replaced
- Mechanisms built on top of ULFM may need PMPI



And Now to Something Completely Different!



Partitioned Communication (MPI 4.0)

Next steps:  
- Collective versions for partitioned communication

Current extension proposals focus on accelerators
- Optimizations to ensure buffers are “ready”
- Bindings should allow exection from the accelerator

MPI_Psend_init(..., &request);

for (...) {

MPI_Start(&request);

#pragma omp parallel

{

kernel(..., request);

}

MPI_Wait(&request);

}

MPI_Request_free(&request);

Thread:

kernel(..., MPI_Request request) {

int i = my_partition[my_id];

/* Compute and fill partition i then mark ready: */

MPI_Pready(i, request);

}



Accelerator Bindings for MPI Partitioned APIs
CUDA and SYCL Language Bindings Under Exploration

Interception options unclear
• Does PMPI work on this and, if so, how? Do we need it?
• How would this impact tools for other functions (e.g., RMA Put/Get)?

int MPI_Psend_init(const void *buf, int partitions, MPI_Count count,
MPI_Datatype datatype, int dest, int tag, MPI_Comm comm, MPI_Info info,
MPI_Request *request)

int MPI_Precv_init(void *buf, int partitions, MPI_Count count,
MPI_Datatype datatype, int source, int tag, MPI_Comm comm, MPI_Info info,
MPI_Request *request)

int MPI_[start,wait][_all](...)

__device__ int MPI_Pready(int partition, MPI_Request request) 

__device__ int MPI_Pready_range(int partition_low, int partition_high, MPI_Request request) 

__device__ int MPI_Pready_list(int length, const int array_of_partitions[], MPI_Request request) 

__device__ int MPI_Parrived(MPI_Request request, int partition, int *flag) 

Keep host only
Add device 

bindings

From: Work by Jim Dinan, NVIDIA and Maria Garzaran, Intel



MPI Continuations

Opening Up MPI for Hybrid Runtimes
Several Proposals for Continuations
- Treat the completion of an MPI operation as continuation of some activity
- Ability to couple with OpenMP events and dependencies



Proposal for Thread Continuations

“Callback-based completion notification using MPI Continuations,”
Joseph Schuchart, Christoph Niethammer, José Gracia, George Bosilca, Parallel Computing, 2021.

“MPI Detach - Asynchronous Local Completion,”
Joachim Protze, Marc-André Hermanns, Ali Demiralp, Matthias S. Müller, Torsten Kuhlen. EuroMPI ‘20.
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MPI Continuations

Opening Up MPI for Hybrid Runtimes
Several Proposals for Continuations
- Treat the completion of an MPI operation as continuation of some activity
- Ability to couple with OpenMP events and dependencies

Consequences for Tools
- Must track MPI and OpenMP
- Request tracking needs new approach
- May need wrapping of callback function (limitations tbd.)



Good News (hopefully J ): QMPI is Making Progress

Replacement idea for PMPI
- Multiple intercepts
- Runtime loading
- Options for user vs. system tools

Status
- Initial PMPI prototype

(works on any MPI)
- Text proposal almost complete
- Prototype in MPICH available
- Open questions

- Tool specification at runtime
- How to deal with PMPI in transition period
- Long term: dynamic tool loading
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MPI is Changing and Tools will Need to Adapt

Sessions change process tracking
- No global process set is guaranteed
- Process sets can change

Malleability à Dynamic Tools
- Track process sets even within sessions
- Capture negotiations with runtime
- Match adjustment phases of apps
- Fault tolerance complicates things

Other new features likely on the way
- Accelerator bindings

(especially for partitioned communication)
- Push towards hybrid runtimes

QMPI is making progress

www.mpi-forum.org

http://www.mpi-forum.org/

