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Possible Malleability Support in MPI 5 T

(and all the other stuff the MPI Forum is cooking up):

What Does it Mean for (MPI) Tools?

1| .

| LT

Martin Schulz -
B e A
Chair for Computer Architecture and Parallel Systems ,@ | @ @I‘
Technical University of Munich (TUM) [ =
M | |

Scalable Tools Workshop 2022 ﬂ:{ﬁ Sas 3
Monday June 20th, 2022 [ 1




Overview of (some) items in MPI that will affect tools  TLITI

MPI 4.0 introduced MPI Sessions

— Dynamic initialization and finalization
— Resource isolation

Plans for MPI 5.0 include support for malleability
— Based on the MPI Sessions model
— Changing resource availability and usage on the fly

Other MPI features

— Fault tolerance
— Partitioned communication and accelerator bindings
— Continuations

Finally, perhaps some good news: QMPI



MPI| Sessions

Instead of MPI_Init / MPI_COMM_WORLD:

1. Get local access to the MPI library MP| Session
Get a Session Handle _

2. Query the underlying run-time system Set of processes
Get a “set” of processes

3. Determine the processes you want
Create an MPI_Group

4. Create a communicator with just those processes
Create an MPI_Comm

Never mix handles derived from two sessions in any call!



MPI| Sessions

What does this do?
— Deliver runtime information to the MPI library @

— Enable resource isolation between sessions HOW
— Eliminate the static resource MPI_COMM_WORLD
WHAT

Where do Process Sets Come From?
— Two predefined sets: mpi://WORLD and mpi://SELF
— Runtimes can provide system configurations, like location://rack/17

— Users can specify process sets, like app://ocean

Intended Usage Patterns
— Scalable initialization on subsets of processes

— Separate library initialization
— Separation of application components (ice, ocean, atmosphere, ...)



Consequences TUTI
No MPI_COMM_WORLD (potentially, ever) “\M

— Applications do not have to call MPI_Init

— No longer the first call that can be intercepted N

— More calls allowed before MPI_Init ‘// ) ﬁ\ /
— Applications can call MPIl_Session_init multiple times

— Every session can have different process sets
— Even mpi://WORLD can be different

Tools need to track all Session initializations and finalizations
— May have to deal with re-initializations
— Can only rely on communicators derived from particular process sets
— Have to obey the rule of not mixing handles from multiple sessions
— Will be hard to impossible to create a global communicator

Advantages: Tools can utilize separate/isolated sessions themselves



PMPI and MPI Sessions Tum

MPI Session calls can be tracked with PMPI

— Standard interception possible
— Can influence thread levels, if needed

Currently: single PMPI tool stack across all MPI Sessions

— Tools need to keep track of session handles and associations
— Forum is considering a query Session ID procedure — helpful?
— Tool invocations may not make sense in the calling context

Is this the right model?

— Or should there be a tool(stack) per session

— If so, how to specify the tool? @ GZ‘} ®
— How to name/associate the sessions? N
— Or should there for be a different model? YOUR FEEDBACK

MATTERS

— Do we need other routines?



Malleability on top of MP| Sessions TUM

Enables path from the runtime to the application
— Runtime can add new process sets in a session (possibly with versioning)
— New sessions can have new process set lists (arguments at session start)

MPI Forum working on APIs to provide handshake
— Detection of new resources
— Negotiations for and acceptance of new resources |

Connection to fault tolerance proposals
— Set of sessions from multiple processes can form a transitive “bubble’
— Bubbles can be seen as inherent fault domains (connection to FT)

Should maintain MPI look & feel



EuroHPC Time-X: Weather and climate TUTI

Exploit malleable MPI to support varying Each column represents a parallel-in-time
resources ‘for parallel-in-time applications simulation instance for a particular time interval
— Vary number of parallel steps
— Based on efficiency predictions
— Based on resource availability

Total Time

Key design points
— Who triggers malleability?
— Cost model

Total Time

Py P P, P Py Ps

Support removing time-parallel simulation

EU Grant #955701 instances (top) or adding them (bottom)
BMBF #16HPCO050 9




Impact of Malleability TUM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | Resource Change: Add {1,13}

1 2 3 4 5 6 It 8 9 10 11 12 13 14 15 | Resource Change: Add {6}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | Resource Change: Remove {1,4}

1 2 3 4 5 6 7t 8 9 10 11 12 13 14 15 | Resource Change: Add {15}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | Resource Change: Remove {5,12,13}

1 2 3 4 5 6 i 8 9 10 11 12 13 14 15 | Resource Change: Add {1,213}

 Resources can come and go
« Final set can be completely different than starting
« But: negotiation routines can be intercepted

From: Jan Fecht, TUM — published at HPCMALL 2022



Example API

Resource Changes

 Resource Change = new process set +
resource change type

* The application:
1. polls for a resource change
2. does load balancing
3. accepts the resource change

* Optional info object for passing
information to new processes

From: Jan Fecht, TUM — published at HPCMALL 2022

TUTI

int MPIDYNRES_RC_get (

);

MPI_Session session,
MPIDYNRES_RC_type *o_rc_type,
char o_diff_pset_name[],
MPIDYNRES_RC_tag *o_tag,
MPI_Info *o_info

int MPIDYNRES_RC_accept(

)i

MPI_Session session,
MPIDYNRES_RC_tag i_tag,
MPI_Info i_info



Example for Malleability TUM

- inactive running — running, marked for removal = = inactive, marked for start
P, e e e R S e e e e
P2 - (] R --ooooooneee e (}----=-----]-=-=--=-=--- — K-
P3 - X-----
2 X-----
PE - X-----
PB  -r-eroe oo E ———————————————————— — X -
A e e L R R R Jemeecmnen- — X------
i - set operation: difference set operation: union o s
main thoftest set resourF:e chanlge. {ng3 P4,P5}, (P2} change accepted: ~ resource change: 3 p4pp5} (P2,P6,P7} change accepted: Application is
is started: type: (emova _>'Ne;/v rﬁain ’set' {P2} is removed type: addition _‘> r\iew ;nain'set" {P2,P6,P7} are done, processes
{P2,P3,P4,P5} set: {P2} : set: {P2,P6,P7) ' started shut down

{P3,P4,P5} {P2,P3,P4,P5,P6,P7}

Creation of new Psets

* New routines are an option for this @ @ @

Processes come and go
* Need to intercept “adjustment phase” YOUR FEEDBACK
* Need to see if application accepts the changes MATTERS

From: Jan Fecht, TUM — published at HPCMALL 2022



A different view on Malleability: Fault Tolerance TUM

MPI Forum is making a push (again) for fault tolerance
— Multiple options/models on the table, tools will have to track that
— Implicitly changes to set of processes of applications
— Already changes to error handling to allow for continued execution




Coarse-grained Recovery (Reinit)
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A different view on Malleability: Fault Tolerance

MPI Forum is making a push (again) for fault tolerance
— Multiple options/models on the table, tools will have to track that
— Implicitly changes to set of processes of applications
— Already changes to error handling to allow for continued execution

Option 1: Coarse-Grained Recovery (“Reinit” proposal)
— On failure in the system, automatic jump to start of main / No finalize
— Processes will be re-used so that data can be maintained
— But some processes may be restarted from scratch
— All MPI state is lost and has to be rebuilt (including tool state!)



ULFM MPI Crash Recovery

« Some applications can continue w/o recovery
« Some applications are malleable

* Shrink creates a new, smaller communicator on which collectives

work

« Some applications are not malleable

« Spawn can recreate a “same size” communicator

» Itis easy to reorder the ranks according to the original ordering

* Pre-made code snippets available

Failure Notification
Error Propagation
Error Recovery
* Respawn of nodes
« Dataset restoration

From: Aurelien Bouteiller, UTK

Not all recovery strategies
require all of these
features,

that’s why the interface
should split notification,
propagation and recovery.

Who should be notified of a failure?
What is the scope of a failure?
What actions should be taken?

TUTI

Adds 3 error codes and 5
functions to manage process
crash

Error codes: interrupt
operations that may block due
to process crash
MPI_COMM_FAILURE_ACK /
GET_ACKED: continued
operation with ANY-SOURCE
RECV and observation known
failures

MPI_COMM_REVOKE lets
applications interrupt
operations on a communicator
MPI_COMM_AGREE:
synchronize failure knowledge
in the application
MPI_COMM_SHRINK: create a
communicator excluding failed
processes

More info on the MPI Forum
ticket #20:

h ://github.com/mpi-
forum/mpi-i i 2



A different view on Malleability: Fault Tolerance

MPI Forum is making a push (again) for fault tolerance
— Multiple options/models on the table, tools will have to track that
— Implicitly changes to set of processes of applications
— Already changes to error handling to allow for continued execution

Option 1: Coarse-Grained Recovery (“Reinit” proposal)
— On failure in the system, automatic jump to start of main / No finalize
— Processes will be re-used so that data can be maintained
— But some processes may be restarted from scratch
— All MPI state is lost has to be rebuilt (including tool state!)

Option 2: Fine-Grained Recovery (“ULFM” proposal)
— Contiued, but limited operation after failure
— Tools would have to follow same limitations (and not change the state!)
— Communicator can be revoked, shrunk and deleted/replaced
— Mechanisms built on top of ULFM may need PMPI




And Now to Something Completely Different!




Partitioned Communication (MPI| 4.0)

MPI_Psend_init(..., &request);

for (...) {
MPI_Start(&request);
#pragma omp parallel

{

Thread:

kernel(..., MPI_Request request) {
int i = my_partition[my_id];
/* Compute and fill partition i then mark ready: */
kernel(..., request); NN

MPI_Pready(i, request);
}

3
MPI_Wait(&request);

}
MPI_Request_free(&request);

Next steps:
_ Collective versions for partitioned communication

Current extension proposals focus on accelerators
- Optimizations to ensure buffers are “ready”
- Bindings should allow exection from the accelerator



Accelerator Bindings for MPI Partitioned APIs m

CUDA and SYCL Language Bindings Under Exploration

int MPI_Psend_init(const void *buf, int partitions, MPI_Count count,
MPI_Datatype datatype, int dest, int tag, MPI_Comm comm, MPI_Info info,
MPI_Request *request)

int MPIl_Precv_init(void *buf, int partitions, MPI_Count count,
MPI_Datatype datatype, int source, int tag, MPI_Comm comm, MPI_Info info,
MPI_Request *request)

int MPI_[start,wait][_all](...) Keebp host onl
__device__ int MPI_Pready(int partition, MPI_Request request) Add device
__device___int MPI_Pready_range(int partition_low, int partition_high, MPI_Request request) blnd/ngs

__device__int MPI_Pready_list(int length, const int array_of_partitions[], MPI_Request request)

__device___int MPI_Parrived(MPI_Request request, int partition, int *flag)

9O

Interception options unclear
 Does PMPI work on this and, if so, how? Do we need it? Yﬂl"l FEEDBACK
« How would this impact tools for other functions (e.g., RMA Put/Get)? MATTE“S

From: Work by Jim Dinan, NVIDIA and Maria Garzaran, Intel



MPI| Continuations

Opening Up MPI for Hybrid Runtimes

Several Proposals for Continuations
— Treat the completion of an MPI operation as continuation of some activity
— Ability to couple with OpenMP events and dependencies



Proposal for Thread Continuations

status, *data)

value; event = (omp event handle t)(

(event) -
2vent);

MPI Irecv(&value, ..., &req);

”

“Callback-based completion notification using MPI Continuations,
Joseph Schuchart, Christoph Niethammer, José Gracia, George Bosilca, Parallel Computing, 2021.

“MPI Detach - Asynchronous Local Completion,”
Joachim Protze, Marc-André Hermanns, Ali Demiralp, Matthias S. Mduller, Torsten Kuhlen. EuroMPI ‘20.




MPI Continuations Tum

Opening Up MPI for Hybrid Runtimes

Several Proposals for Continuations
— Treat the completion of an MPI operation as continuation of some activity
— Ability to couple with OpenMP events and dependencies

Consequences for Tools
— Must track MPI and OpenMP
— Request tracking needs new approach
— May need wrapping of callback function (limitations tbd.)

©OE

YOUR FEEDBACK

MATTERS



Good News (hopefully © ): QMPI is Making Progress ~ TUTI

Replacement idea for PMPI

Comm.
- Multiple intercepts Optlmuzauon‘—]

- Runtime loading [_,
- Options for user vs. system tools e )
Applcation C—) System Monitor <€ 'I\'/IIEI
Status - J
- Initial PMPI prototype
(WorkS on any MP') C—) Runtime Tuner €—— >
- Text proposal almost complete A MP| * PP A
~ Prototype in MPICH available N S APL 5
- Open questions tune |
- Tool specification at runtime @ Q\}
- How to deal with PMPI in transition period YOUR FEEEIBAGI(

~ Long term: dynamic tool loading MATTEBS
)

From: Bengisu Elis, TUM — published at EuroMPI 2019, MPICH Implementation by Wesley Bland when at Intel (now Meta



MPI is Changing and Tools will Need to Adapt TLTI

Sessions change process tracking
- No global process set is guaranteed
- Process sets can change

Malleability > Dynamic Tools
- Track process sets even within sessions
- Capture negotiations with runtime
- Match adjustment phases of apps
- Fault tolerance complicates things

Other new features likely on the way
- Accelerator bindings
(especially for partitioned communication)
- Push towards hybrid runtimes

QMPI is making progress

' M PI www.mpi-forum.org
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