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High performance and challenges
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Outline
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Outline

✓Lightweight profiling

✓SMT-aware optimization
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SMT-Aware Instantaneous Footprint 
Optimization

Probir Roy, Shuaiwen Leon Song, Xu Liu

[HPDC – 2016]

Exploiting Modern Hardware Features via Lightweight Profiling
11



SMT (Simultaneous Multi-Threading)

Superscalar 2-way SMT
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SMT scalability

Runtime ratio = SMT runtime / non-SMT runtime

Shared memory SPMD application 
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SMT architecture: shared cache
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SMT: Memory scalability

SMT scaling factor (F) = access Latency of SMT/ access Latency of non-SMT
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Characterization based on sensitivity

(L,F) Benchmarks Characterization

(high, high) srad, streamcluster1, Lulesh2.0, IRSmk, 
LU, 3D tensor, Stencil, streamcluster2,

hotspot, Clomp

potentially sensitive
to mem-centric SMT

optimizations

(high, low) lud, needle, bfs, nn, bp, canneal,
Ferret

not clear if they can
further benefit from
SMT optimizations

(low, high) leucocite, heartwall, pathfinder, 
myocyte

little benefit from
mem-centric SMT

optimization

(low, low) b+tree, cfd, kmeans, lavaMD, particle 
filter, hotspot3D, blackscholes,

bodytrack, facesim,
Swaptions

good memory
performance with

SMT enabled

L = Memory Access Latency; F = scaling factor
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SMT locality (Stencil code)
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#pragma omp parallel for
for (int i=T; i<N-T; i++)
for (int j=T; j<N-T; j++)

for (int k=0; k<T; k++)
R[i][j] = matrix[i][j]

+ matrix[i-k][j]+matrix[i][j-k]
+ matrix[i+k][j]+matrix[i][j+k];
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SMT-Analyzer: Analyzing memory access 
pattern

Exploiting Modern Hardware Features via Lightweight Profiling
threads

M
e

m
o

ry
 r

an
ge

T1 T2 T3 T4 T5
Loop

19



SMT-Analyzer: Analyzing memory access 
pattern

Exploiting Modern Hardware Features via Lightweight Profiling
threads

M
e

m
o

ry
 r

an
ge

T1 T2 T3 T4 T5

PMU

Loop

19



SMT-Analyzer: Analyzing memory access 
pattern

Exploiting Modern Hardware Features via Lightweight Profiling
threads

M
e

m
o

ry
 r

an
ge

T1 T2 T3 T4 T5

PMU S S S S
Application Time

Reference Type

Data Address

Instruction Pointer

Thread 

Loop

19



SMT-Analyzer: Analyzing memory access 
pattern

Exploiting Modern Hardware Features via Lightweight Profiling
threads

M
e

m
o

ry
 r

an
ge

T1 T2 T3 T4 T5

PMU S S S S
Application Time

Reference Type

Data Address

Instruction Pointer

Thread 

Loop

19



Benchmarks

Benchmarks bottleneck region % of total 
latency

overhead OPT method Speedups

lulesh2.0 lulesh.cc: 604-609 3.6% +3.1% inter-thread 1.43×

IRSmk rmatmult3.c: 86-103 78.6% +3.2% intra-thread 4.86×

needle needle.cpp:185-187 20% +2.99% inter-thread 2.37×

srad srad.cpp:136-167 80.1% +2.47% intra-thread 1.74×

LU rhs.f:318-328 8.4% +10.6% inter-thread 1.36×

Stencil stencil.c:16-21 95.7% +1.55% inter-thread 10.9×

3D tensor mt.c: 22-22 69.4% +2.4% inter-thread 1.44×

streamcluster2 streamcluster.cpp:653 14.1% +15.2% inter-thread 6.72×
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Related work: MACPO (selective instrumentation): 2x - 5x
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Outline

✓Lightweight profiling

✓SMT-aware optimization

•Detection of cache conflicts
• Guiding data-structure layout transformation
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Lightweight Detection of Cache 
Conflicts

Probir Roy, Shuaiwen Leon Song, Sriram Krishnamoorthy, Xu Liu

[CGO – 2018]

Exploiting Modern Hardware Features via Lightweight Profiling
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Set conflict

Exploiting Modern Hardware Features via Lightweight Profiling

…
…
…

…
…

[0] [1] [2] [127]

[0]

[1]

[2]

[20,000]

double Array [20,000][128];

24



Set conflict

Exploiting Modern Hardware Features via Lightweight Profiling

…
…
…

…
…

[0] [1] [2] [127]

[0]

[1]

[2]

[20,000]

double Array [20,000][128];

Set mapping

0 1 15

16 17 31

32 33 47

48 49 63

0 1 15

16 17 31

48 49 63
…

128

24



Set conflict

Exploiting Modern Hardware Features via Lightweight Profiling

…
…
…

…
…

[0] [1] [2] [127]

[0]

[1]

[2]

[20,000]

double Array [20,000][128];

Set mapping

0 1 15

16 17 31

32 33 47

48 49 63

0 1 15

16 17 31

48 49 63
…

128

24



Set conflict

Exploiting Modern Hardware Features via Lightweight Profiling

…
…
…

…
…

[0] [1] [2] [127]

[0]

[1]

[2]

[20,000]

double Array [20,000][128];

Set mapping

0 1 15

16 17 31

32 33 47

48 49 63

0 1 15

16 17 31

48 49 63
…

128

0 16 32 48 0 16 32 48 0
Time

24



Set conflict

Exploiting Modern Hardware Features via Lightweight Profiling

…
…
…

…
…

[0] [1] [2] [127]

[0]

[1]

[2]

[20,000]

double Array [20,000][128];

Set mapping

0 1 15

16 17 31

32 33 47

48 49 63

0 1 15

16 17 31

48 49 63
…

128

0 16 32 48 0 16 32 48 0
Time

Pad

24



Set conflict

Exploiting Modern Hardware Features via Lightweight Profiling

…
…
…

…
…

[0] [1] [2] [127]

[0]

[1]

[2]

[20,000]

double Array [20,000][128];

Set mapping

0 1 15

16 17 31

32 33 47

48 49 63

0 1 15

16 17 31

48 49 63
…

128

Set mapping
after padding

0 1 15 16

17 32 33

49

51 52 2

4 5 19

21 22 36

55 56 6

18

34 35 50

20

37

7

3

…

Pad128

0 16 32 48 0 16 32 48 0
Time

Pad

24



Set conflict

Exploiting Modern Hardware Features via Lightweight Profiling

…
…
…

…
…

[0] [1] [2] [127]

[0]

[1]

[2]

[20,000]

double Array [20,000][128];

Set mapping

0 1 15

16 17 31

32 33 47

48 49 63

0 1 15

16 17 31

48 49 63
…

128

Set mapping
after padding

0 1 15 16

17 32 33

49

51 52 2

4 5 19

21 22 36

55 56 6

18

34 35 50

20

37

7

3

…

Pad128

0 16 32 48 0 16 32 48 0
Time

Pad

24



Set conflict

Exploiting Modern Hardware Features via Lightweight Profiling

…
…
…

…
…

[0] [1] [2] [127]

[0]

[1]

[2]

[20,000]

double Array [20,000][128];

Set mapping

0 1 15

16 17 31

32 33 47

48 49 63

0 1 15

16 17 31

48 49 63
…

128

Set mapping
after padding

0 1 15 16

17 32 33

49

51 52 2

4 5 19

21 22 36

55 56 6

18

34 35 50

20

37

7

3

…

Pad128

0 16 32 48 0 16 32 48 0
Time

0 817 34 51 4 21 48 55
Time

Pad

24



Set conflict

Exploiting Modern Hardware Features via Lightweight Profiling

…
…
…

…
…

[0] [1] [2] [127]

[0]

[1]

[2]

[20,000]

double Array [20,000][128];

Set mapping

0 1 15

16 17 31

32 33 47

48 49 63

0 1 15

16 17 31

48 49 63
…

128

Set mapping
after padding

0 1 15 16

17 32 33

49

51 52 2

4 5 19

21 22 36

55 56 6

18

34 35 50

20

37

7

3

…

Pad128

0 16 32 48 0 16 32 48 0
Time

0 817 34 51 4 21 48 55
Time

Pad

Is your application suffering conflict 
cache miss?

24



L1 cache

Conflict cache miss

Memory trace

Cache 
simulator

Classifying miss

Simulation methods

Exploiting Modern Hardware Features via Lightweight Profiling

Trace driven cache simulation

A[0][0] A[1][0] A[2][0] A[0][0] A[3][0] A[2][0] … A[0][0]
Time

25



L1 cache

Conflict cache miss

Memory trace

Cache 
simulator

Classifying miss

Simulation methods

Exploiting Modern Hardware Features via Lightweight Profiling

Trace driven cache simulation

A[0][0] A[1][0] A[2][0] A[0][0] A[3][0] A[2][0] … A[0][0]
Time

Overhead: average 38 times

25



L1 cache

Conflict cache miss

Memory trace

Cache 
simulator

Classifying miss

Simulation methods

Exploiting Modern Hardware Features via Lightweight Profiling

Trace driven cache simulation

A[0][0] A[1][0] A[2][0] A[0][0] A[3][0] A[2][0] … A[0][0]
Time

Xiang, Xiaoya, Chen Ding, Hao Luo, and Bin Bao. "HOTL: a 
higher order theory of locality." ACM SIGPLAN Notices 48, no. 
4 (2013): 343-356.

Overhead: average 38 times

25



L1 cache

Conflict cache miss

Memory trace

Cache 
simulator

Classifying miss

Simulation methods

Exploiting Modern Hardware Features via Lightweight Profiling

Trace driven cache simulation

A[0][0] A[1][0] A[2][0] A[0][0] A[3][0] A[2][0] … A[0][0]
TimeHigh overhead

Xiang, Xiaoya, Chen Ding, Hao Luo, and Bin Bao. "HOTL: a 
higher order theory of locality." ACM SIGPLAN Notices 48, no. 
4 (2013): 343-356.

Overhead: average 38 times

25



L1 cache

Conflict cache miss

Memory trace

Cache 
simulator

Classifying miss

Simulation methods

Exploiting Modern Hardware Features via Lightweight Profiling

Trace driven cache simulation

A[0][0] A[1][0] A[2][0] A[0][0] A[3][0] A[2][0] … A[0][0]
TimeHigh overhead

Difficult to simulate hardware

Xiang, Xiaoya, Chen Ding, Hao Luo, and Bin Bao. "HOTL: a 
higher order theory of locality." ACM SIGPLAN Notices 48, no. 
4 (2013): 343-356.

Overhead: average 38 times

25



L1 cache

Conflict cache miss

Memory trace

Cache 
simulator

Classifying miss

Simulation methods

Exploiting Modern Hardware Features via Lightweight Profiling

Trace driven cache simulation

A[0][0] A[1][0] A[2][0] A[0][0] A[3][0] A[2][0] … A[0][0]
TimeHigh overhead

Difficult to simulate hardware

Difficult in practiceTheoretically accurate

Xiang, Xiaoya, Chen Ding, Hao Luo, and Bin Bao. "HOTL: a 
higher order theory of locality." ACM SIGPLAN Notices 48, no. 
4 (2013): 343-356.

Overhead: average 38 times

25



Exploiting Modern Hardware Features via Lightweight Profiling

Memory trace

Cache 
simulator

Classifying miss

Simulation methods

A practical low overhead solution

26



Exploiting Modern Hardware Features via Lightweight Profiling

CCProf

Memory trace

Cache 
simulator

Classifying miss

Simulation methods

A practical low overhead solution

26



Exploiting Modern Hardware Features via Lightweight Profiling

CCProf

Measurement methods

Memory trace

Cache 
simulator

Classifying miss

Simulation methods

A practical low overhead solution

26



Exploiting Modern Hardware Features via Lightweight Profiling

CCProf

Memory 
sampling

Statistical 
analysis

Classifying miss

Measurement methods

Memory trace

Cache 
simulator

Classifying miss

Simulation methods

A practical low overhead solution

26



Exploiting Modern Hardware Features via Lightweight Profiling

CCProf

Memory 
sampling

Statistical 
analysis

Classifying miss

Measurement methods

Memory trace

Cache 
simulator

Classifying miss

Simulation methods

A practical low overhead solution

Overhead

>>

Accuracy

~
26



Hardware-based address sampling (Cont.)
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Observation: temporal pattern of conflict
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Observation: temporal pattern of conflict (cont.)
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Observation: temporal pattern of conflict (cont.)
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Observation: temporal pattern of conflict (cont.)

Exploiting Modern Hardware Features via Lightweight Profiling

0 16 32 48 0 16 32 48 0

0 017 34 51 4 21 48 …

Distance = 3 Distance = 3

Distance = 63

Conflict

No 
conflict

Time

Time

29



Re-conflict Distance (RCD)

• Number of cache misses in other cache sets between two
consecutive misses in one particular set

S1 S2 S0 S1 S3 S2 S1 S0

RCD=2 RCD=2
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Re-conflict Distance (RCD)
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RCD and it’s contribution
RCD Count Is conflict?

Short Large Yes

Short Small No

Long ~ No

Exploiting Modern Hardware Features via Lightweight Profiling
31



RCD and it’s contribution
RCD Count Is conflict?

Short Large Yes

Short Small No

Long ~ No

Exploiting Modern Hardware Features via Lightweight Profiling

Regression 
model

Benchmark RCD

Application RCD Model
Conflict

No-Conflict

P
re

d
ic

ti
o

n
Tr

ai
n

in
g

31



Case Study: PolyBench/C -ADI

Exploiting Modern Hardware Features via Lightweight Profiling

CCPROF PREDICTS >>> *** CONFLICT MISS *** in LOOP(line: 102). Loop contribution is *** HIGH *** 94.26%
CCPROF PREDICTS >>> *** NO CONFLICT MISS *** in loop(line: 108). Loop's contribution to total L1 miss: 3.13%
CCPROF PREDICTS >>> *** NO CONFLICT MISS *** in loop(line: 117). Loop's contribution to total L1 miss: 0.86%
CCPROF PREDICTS >>> *** NO CONFLICT MISS *** in loop(line: 122). Loop's contribution to total L1 miss: 1.74%
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RCD – before and after optimization

Speedup: 3× Speedup: 1.26×
Speedup: 1.13×

Speedup: 1.09×* Speedup: 94.6×* Speedup: 1.12×

*Loop level SpeedupExploiting Modern Hardware Features via Lightweight Profiling
33



RCD – before and after optimization

Speedup: 3× Speedup: 1.26×
Speedup: 1.13×

Speedup: 1.09×* Speedup: 94.6×* Speedup: 1.12×

*Loop level Speedup

Median overhead: 37%
Compare with simulation: 38x
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Outline

✓Lightweight profiling

✓SMT-aware optimization

✓Detection of cache conflicts

•Guiding data-structure layout transformation

Exploiting Modern Hardware Features via Lightweight Profiling
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StructSlim: A lightweight profiler to 
guide structure splitting

Probir Roy , Xu Liu
[CGO – 2016]

LWPTool: A Lightweight Profiler to Guide 
Data Layout Optimization

Chao Yu, Probir Roy, Yuebin Bai, Hailong Yang, Xu Liu
[TPDS – 2018]
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Inefficient data-structure

struct type {int a; int b; int c; int d;};
struct type Arr[N];
for (i = 0; i < N; i++)

B[i] = Arr[i].a + Arr[i].c;

a b c d a b c d

L1 cache

Exploiting Modern Hardware Features via Lightweight Profiling

Cache line 
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Structure splitting- Questions to ask

Exploiting Modern Hardware Features via Lightweight Profiling

How to split structure?
Which data structures are significant?

Which fields to keep together?
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Code-centric and data-centric attribution

Exploiting Modern Hardware Features via Lightweight Profiling
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Code-centric and data-centric attribution
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Case study: SPEC CPU 2000 ART

Loops with line 
numbers

Latency percentage Accessed fields

131-138 1.59% U,P

559-570 8.42% X,Q

553-554 1.98% W

545-548 10.83% U, I

615-616 56.57% P

607-608 14.40% P

589-592 2.25% U, P

575-576 3.72% V

1015-1016 0.24% I

Exploiting Modern Hardware Features via Lightweight Profiling

typedef struct
{

double *I; double W; double X; double V; double U; double P; double Q; double R;
}f1_neuron

U

I P

Q X

R W V

86% 5%

100%

Affinity graph
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typedef struct{ double *I; double U;} f1_neuron_IU;
typedef struct{ double Q; double X;} f1_neuron_QX;
typedef struct{ double P;} f1_neuron_P;
typedef struct{ double V;} f1_neuron_V;
typedef struct{ double W;} f1_neuron_W;
typedef struct{ double R;} f1_neuron_R;
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Benchmarks: speedup, overhead, cache miss
Benchmarks Speedups Runtime

overhead
L1 miss 

reduction
L2 miss 

reduction

179.ART 1.37× 2.05% 46.5% 51.1%

462.Libquantum 1.09× 2.79% 49% 82.6%

TSP 1.09× 2.42% 13.3% 19.9%

Mser 1.03× 2.95% 8.3% 8.4%

CLOMP 1.2 1.25× 16.1% 15.5% 26.4%

Health 1.12× 18.3% 66.7% 90.8%

NN 1.33× 5.21% 87.2% 98.0%

Average 1.18× 7.1%

Exploiting Modern Hardware Features via Lightweight Profiling

gcc -O3

Yan, Jianian, Jiangzhou He, Wenguang Chen, Pen-Chung Yew, and Weimin Zheng. "ASLOP: A field-access affinity-based structure data layout optimizer."

Related work: Overhead: average 4x
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Conclusions

Exploiting Modern Hardware Features via Lightweight ProfilingLow overhead

Deep 
insight

Simulation methods
(PinTool, GPGPUSim, 

GEMS)

Measurement methods
(Perf, Oprofile, PAPI)

Shallow  
insight

High overhead

SMTAnalyzer

StructSlim

CCProf

Lightweight profiling with PMUs can provide deep 
insights into performance issues cause by memory 
hierarchies and poor algorithm choice.
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Challenges ahead

• Program analysis for declarative programming languages
• Domain specific languages provide high-level abstraction

• Machine learning (PyTorch), HPC (HDF5), big-data (SQL)

• Analyzing and optimizing data center and cloud application
• Resource utilization/scheduling in multi-tenant environment

• Heterogenous architecture resource management

• Security analysis
• Program analysis to identify vulnerable source code

• Analysis of emerging hardware
• GPU, FPGA, Tensor processing units
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