Exploiting Modern Hardware
Features via Lightweight Profiling

Probir Roy

Scalable Tools Workshop’19

WILLIAM @9 MARY

RRRRRRRRRRR

igh performance and challenges

IBM POWER 9 CPU

Tensor Processing Unit [%
/.

Exploiting Modern Hardware Features via Lightweight Profiling

igh performance and challenges

: ,‘:‘1‘1 - 7 | Sl == 18 N f e T ‘
G {2 = ¥ Tl
b R A A < :
e o |] =
i
{ "

IBM POWER 9 CPU

O o'y
5 asze
L) O < .

" .
® ®
0
s
.
9 J y
Fige
(@) 4 ¢ o P .
. 7 . Multiple L L
/ fage Locations o

Tensor Processing Unit

Exploiting Modern Hardware Features via Lightweight Profiling

igh performance and challenges

— e S 1 S T '
9 = < r — “‘ -- .. " ~ pa
P G—— =T i o -
.= | |] =
- v ’ I
f]
\

IBM POWER 9 CPU

ooy
;l' as’?

o %0 o ®

)) L)

()
.,

Exploiting Modern Hardware Features via Lightweight Profiling)

\

cassandra redis

Amazon CloudFront W

| Ju Ia Tensor

Exploiting Modern Hardware Features via Lightweight Profiling)

igh performance and challenges

Performance
A
o W OpenMP MPI
Amazon CIoudFront § é
| cassandra redis
~

JUIIa Tenscl:r

Exploiting Modern Hardware Features via Lightweight Profiling)

igh performance and challenges

Performance

of hardware and
software is a challenge

igh performance and challenges

Performance

Variable characteristics of hardware and

software is a challenge

igh performance and challenges

http://sites.utexas.edu/jdm4372/2016/11/22/sc16-invited-talk-memory-bandwidth-and-system-balance-in-hpc-systems/

igh performance and challenges

http://sites.utexas.edu/jdm4372/2016/11/22/sc16-invited-talk-memory-bandwidth-and-system-balance-in-hpc-systems/

Exploiting Modern Hardware Features via Lightweight Profiling

igh performance and challenges

Memory bandwidth increasing at ~¥23% per year

http://sites.utexas.edu/jdm4372/2016/11/22/sc16-invited-talk-memory-bandwidth-and-system-balance-in-hpc-systems/

Exploiting Modern Hardware Features via Lightweight Profiling

igh performance and challenges

Peak FLOPS per socket increasing at 50%-60% per year

Memory bandwidth increasing at ~23% per year

Memory latency increasing at ~4% per year

http://sites.utexas.edu/jdm4372/2016/11/22/sc16-invited-talk-memory-bandwidth-and-system-balance-in-hpc-systems/

Steps of performance analysis

Application

Exploiting Modern Hardware Features via Lightweight Profiling

Steps of performance analysis

W Application

Exploiting Modern Hardware Features via Lightweight Profiling

Steps of performance analysis

W Application

- ST

Exploiting Modern Hardware Features via Lightweight Profiling

Steps of performance analysis

W Application

Simulation Measurement

- ST

Exploiting Modern Hardware Features via Lightweight Profiling

Steps of performance analysis

W Application

Simulation Measurement

adl Profiler

-

M IES

Exploiting Modern Hardware Features via Lightweight Profiling

Steps of performance analysis

Simulation Measurement

Exploiting Modern Hardware Features via Lightweight Profiling

Steps of performance analysis

Simulation Measurement

Code
optimization

Exploiting Modern Hardware Features via Lightweight Profiling

Steps of performance analysis

Simulation Measurement

Code
optimization

Exploiting Modern Hardware Features via Lightweight Profiling

Steps of performance analysis

W Application

Simulation Measurement

gl Profiler

\ 4

\ gl Analyzer

Code
optimization

Exploiting Modern Hardware Features via Lightweight Profiling

Limitations of performance analysis (Cont.)

Simulation methods
Deep (PinTool, GPGPUSIm,
insight GEMS)

Shallow Measurement methods

insight

(Perf, Oprofile, PAPI)

High overhead Low overhead

Exploiting Modern Hardware Features via Lightweight Profiling

Limitations of performance analysis (Cont.)

Simulation methods
Deep (PinTool, GPGPUSIm,
insight GEMS)

Shallow Measurement methods

insight

(Perf, Oprofile, PAPI)

High overhead Low overhead

Cache simulation: ave rage 38x (Xiang et al. A higher order theory of locality)

Exploiting Modern Hardware Features via Lightweight Profiling

Limitations of performance analysis (Cont.)

Simulation methods
Deep (PinTool, GPGPUSIm,
insight GEMS)

Shallow
insight

High overhead

Cache simulation: ave rage 38x (Xiang et al. A higher order theory of locality)

Measurement methods

(Perf, Oprofile, PAPI)

Low overhead

Seléctive'instrumentation: 7% £ 5%

ight Profilin
(Rane et al. MACPO)

Limitations of performance analysis (Cont.)

Simulation methods
Deep (PinTool, GPGPUSIm,
insight GEMS)

Shallow Measurement methods

insight

(Perf, Oprofile, PAPI)

High overhead Low overhead

Cache simulation: average 38X (Xiang et al. A higher order theory of locality) Profiling: < 10% (Liu et al. A Data-centric Profiler for Parallel Programs)

Seléctive'instrumentation: 7% *5% (Rane et ai. maceo)

Limitations of performance anal

Simulation methods
Deep (PinTool, GPGPUSIm,
insight GEMS)

Shallow Measurement methods

insight (Perf, Oprofile, PAPI)

High overhead Low overhead

Cache simulation: average 38X (Xiang et al. A higher order theory of locality) Profiling: < 10% (Liu et al. A Data-centric Profiler for Parallel Programs)

Seléctive'instrumentation: 7% *5% (Rane et ai. maceo)

Research statement

Simulation methods

Deep (PinTool, GPGPUSIm,

insight GEMS)

Shallow Measurement methods
insight (Perf, Oprofile, PAPI)

High overhead Low overhead

Exploiting Modern Hardware Features via Lightweight Profiling

E‘iz:tweight profiling with PMUs can provide
Research stateme p insights into performance issues caused by
memory hierarchies and poor algorithm choice

Simulation methods

Deep (PinTool, GPGPUSIm,

insight GEMS)

Shallow Measurement methods
insight (Perf, Oprofile, PAPI)

High overhead Low overhead

Exploiting Modern Hardware Features via Lightweight Profiling 6

E‘ijztweight profiling with PMUs can provide
Research stateme p insights into performance issues caused by
memory hierarchies and poor algorithm choice

D Simulation methods Tools to detect memory
| e_ep (PinTool, GPGPUSIm, and computational
insight GEMS) inefficiency
Shallow Measurement methods
insight (Perf, Oprofile, PAPI)

High overhead Low overhead

Exploiting Modern Hardware Features via Lightweight Profiling 6

Memory
Inefficiency

AN —

My research at a glance

A

Physical Memory

Exploiting Modern Hardware Features via Lightweight Profiling

Memory
Inefficiency

My research at a glance

Sty G oy i

AN —

Exploiting Modern Hardware Features via Lightweight Profiling v

Memory
Inefficiency

My research at a glance

Sy G oy i

AN —

Exploiting Modern Hardware Features via Lightweight Profiling v

Memory
Inefficiency

My research at a glance

AN —

Sy G oy i

. Cache line] . utilization |

Physical Memory

Exploiting Modern Hardware Features via Lightweight Profiling v

Memory
Inefficiency

A —

\

My research at a glance

‘ Simultaneous multi-threading \ CPU [Memory contention

N

4

_Set-associative cache ___ Conflict miss
: Cache ———
. Cacheline | __utilization |
[Non-uniform } Physical Memory [Scalability}
memory

Exploiting Modern Hardware Features via Lightweight Profiling

Memory
Inefficiency

A —

\

My research at a glance

‘ Simultaneous multi-threading \ CPU [Memory contention

N

4

_Set-associative cache ___ Conflict miss
: Cache ———
. Cacheline | __utilization |
[Non-uniform } Physical Memory [Scalability}
memory

Exploiting Modern Hardware Features via Lightweight Profiling

Memory
Inefficiency

\

My research at a glance

‘ Simultaneous multi-threading CPU [Memory contention
,\ 4

- Set- iati h Conflict mi
) [et-associative cache Cache ___ Conflict miss

Cache line] . utilization |

[Non-uniform }

Physical Memory [Scalability 1
memory

Exploiting Modern Hardware Features via Lightweight Profiling v

Outline

[* Lightweight profiling

* SMT-aware optimization
» Detection of cache conflicts
* Guiding data-structure layout transformation

Exploiting Modern Hardware Features via Lightweight Profiling

Lightweight memory profiling

* Hardware profiling

* Event based sampling
* Intel (Precise event based sampling - PEBS)
 AMD (Instruction based sampling - IBS)
* |IBM (Marked event sampling - MRK)

PMU

Lightweight memory profiling

* Hardware profiling

* Event based sampling
* Intel (Precise event based sampling - PEBS)
 AMD (Instruction based sampling - IBS)
* |IBM (Marked event sampling - MRK)

PMU

Application

Time
>

Lightweight memory profiling

* Hardware profiling

* Event based sampling
* Intel (Precise event based sampling - PEBS)
 AMD (Instruction based sampling - IBS)
* |IBM (Marked event sampling - MRK)

PMU

Application

Time
>

Lightweight memory profiling

il
* Hardware profiling

PMU

* Event based sampling
* Intel (Precise event based sampling - PEBS)
 AMD (Instruction based sampling - IBS) TITNY
* |IBM (Marked event sampling - MRK)

g Application

Sl samole sample il Sample

Time

Lightweight memory profiling

il
* Hardware profiling

PMU

* Event based sampling
* Intel (Precise event based sampling - PEBS)
 AMD (Instruction based sampling - IBS) TITNY
* |IBM (Marked event sampling - MRK)

g Application
Time

- o 8 sample il Sample

| {L1 miss, L2 hit etc.)

Instruction
. Exploiting Modern Hardware Features via Lightweight Profiling
Pointer

Outline

v'Lightweight profiling

v SMT-aware optimization

» Detection of cache conflicts
* Guiding data-structure layout transformation

Exploiting Modern Hardware Features via Lightweight Profiling

10

SMT-Aware Instantaneous Footprint
Optimization

[HPDC — 2016]

Probir Roy, Shuaiwen Leon Song, Xu Liu

WILLIAM & MARY Pacific Northwest

CHARTERED 1691 NATIONAL LABORATORY

Exploiting Modern Hardware Features via Lightweight Profiling

11

SMT (Simultaneous Multi-Threading)

<+<—— C(Clock Cycles <«—

Exploiting Modern Hardwarg Features via Lightweight Profiling

12

SMT scalability

Lower is better

3
B Intel Xeon (Sandybridge): 2SMT/core x 8cores
2.5
g O Intel Xeon Phi: 4SMT/core x 61cores
© 2
; |- B IBM Power7;: 4SMT/core x 8cores
E 1.5 r A
o; I
o 1= _ SE— — - - R —
-
(2
O 0 0 0 0l
. ILHLE I
Qw0 X T = %@ Q0 0 T L O C 5 5 T T 0D 5T e —w N0
S8 L v E R38R CEESEEY TR 8R s RS
¥ L o © O = £ 0 7 0 L B o o 0 =
5K § O E & 9 S 2 W E 508 L3 35§88 SE
& < = 0 S O Q S a L 9 8 © 8 3
< 2 s 3 £ = ™ o ¥ 8§ E o
: 3 < 3 ;
e 5 e g=
)]

W
Runtime ratio = SMT runtime / non-SMT runtime

Exploiting Modern Hardware Features via Lightweight Profiling

13

SMT architecture: shared cache

Core 1l

Thread 3

Core 1

L1 Cache

L2 Cache

LLC Cache

Exploiting Modern Hardware Features via Lightweight Profiling

L1 Cache

14

Memory scalability

SMT

Q
o
"

()
L0
o

p

m

O
—

[™ .
[N e N

C — [g

o

a I AR

>

o I RN

c

m N N N

(@)

— R

=

m o N

—t

% [N % N T N NN N

e

mb Y

m [LN N

(5]

— | ESANANN N

W [N N T

()

L Nl e N Y
e e e e N e i N R N
P U % N N
Y

[N N N

L N
T

iy N N,

[t N N Y

e N N
Y

P N N
e N e N]

M N
T

b e M %

e N N N

L
1

7.531..@7.5
I T T o o

1012k} 3uljess 1 INS

suondems
ZJlaisnpweans
18418}

wisaoe]
|[eauued
yoenApoq
S8|0YoSHoE|q
aciodsjoy
[1oUS)S

losua) Q¢

ni
0'¢usain|
dwo|n
|JaIsnjoweans
peis
lapuyyed
12y so1ued
uu

a|psau

91 00Aw
pn|
9]1000N9|
dINeAe|
sueawy
jodsioy
llemuesy
P3O
AWSHI
9al}+q

siq

dq

access Latency of SMT/ access Latency of non-SMT

SMT scaling factor (F)

15

Exploiting Modern Hardware Features via Lightweight Profiling

Characterization based on sensitivity

L = Memory Access Latency; F = scaling factor

(high, high) srad, streamclusterl, Lulesh2.0, IRSmk, potentially sensitive

LU, 3D tensor, Stencil, streamcluster2, to mem-centric SMT

hotspot, Clomp optimizations
(high, low) lud, needle, bfs, nn, bp, canneal, not clear if they can
Ferret further benefit from

SMT optimizations

(low, high) leucocite, heartwall, pathfinder, little benefit from
myocyte mem-centric SMT

optimization

(low, low) b+tree, cfd, kmeans, lavaMD, particle good memory
filter, hotspot3D, blackscholes, performance with

bodytrack, facesim, SMT enabled

Swaptions
16

Characterization based on sensitivity

L = Memory Access Latency; F = scaling factor

" (high, high)

(high, low)

(low, high)

(low, low)

srad, streamclusterl, Lulesh2.0, IRSmk,
LU, 3D tensor, Stencil, streamcluster2,
hotspot, Clomp

potentially sensitive
to mem-centric SMT
optimizations

lud, needle, bfs, nn, bp, canneal, not clear if they can
Ferret , further benefit from
SMT optimizations

leucocite, heartwall, pathfinder, little benefit from
myocyte mem-centric SMT

optimization

b+tree, cfd, kmeans, lavaMD, particle good memory
filter, hotspot3D, blackscholes, performance with

bodytrack, facesim, SMT enabled

Swaptions
16

Source of memory contention

Little/no locality

Exploiting Modern Hardware Features via Lightweight Profiling

17

Source of memory contention

Little/no locality

Intra-thread

A @ SMT thread1l ¢ SMT thread 2

space

Exploiting Modern Hardware Features via Lightweight Profiling

17

Source of memory contention

Little/no locality

Intra-thread

A @ SMT thread1l ¢ SMT thread 2

space

Exploiting Modern Hardware Features via Lightweight Profiling

17

Source of memory contention

Little/no locality

Intra-thread

A @ SMT thread1l ¢ SMT thread 2

e | .//(\ 7['

Optimization: Improve
CaChe ||ne Utl | Izatlo N odern Hardware Features via Lightweight Profiling

17

Source of memory contention

Little/no locality

Intra-thread Inter-thread

A @ SMT thread1l ¢ SMT thread 2

e | ‘//(\ 7[.

Optimization: Improve
CaChe ||ne Utl | Izatlo N odern Hardware Features via Lightweight Profiling

17

Source of memory contention

Little/no locality

Intra-thread Inter-thread

A @ SMT thread1l ¢ SMT thread 2

| AN 2] T

Optimization: Improve
CaChe ||ne Utl | Izatlo N odern Hardware Features via Lightweight Profiling

Source of memory contention

Little/no locality

Intra-thread Inter-thread

@ SMTthreadl @@ SMT thread 2

o | //:{\‘71: N T e g Cchelines
_ Tt e e o caelner

time
Optimization: Improve
cache line utilization odern Hardware Features via Lghtweght Profiing 17

Source of memory contention

Little/no locality
Intra-thread Inter-thread

@ SMTthread1l @@ SMT thread 2
4

v | //:Y_%: N T e g Cchelines
Tt e e cacheliner

/) *-e

>

time

[
Optimization: Improve Optimization:
Cache “ne Utllizatlon odern Hardware Features via Lightwd CO”aboration

SMT locality (Stencil code)

#pragma omp parallel for
for (int i=T; i<N-T; i++)
for (int j=T; Jj<N-T; j++)
for (int k=0; k<T; k++)
R[1][J] = matrix[1i][]]
+ matrix[i-k][j]+matrix[i][j-k]
+ matrix[i+k][j]+matrix[i][j+k];

Exploiting Modern Hardware Features via Lightweight Profiling

18

Thread 1

Thread 2

SMT locality (Stencil code)

#pragma omp parallel for
for (int i=T; i<N-T; i++)
for (int j=T; J<N-T; j++)
for (int k=0; k<T; k++)
R[1][3] = matrix[1][]]
+ matrix[i-k][j]+matrix[i][j-k]
+ matrix[i+k][j]+matrix[i][j+k];

rdware Features via Lightweight Profiling

18

Thread 1

Thread 2

SMT locality (Stencil)

#pragma omp parallel for schedule(static,1) ‘
for (int i=T; i<N-T; i++)
for (int j=T; J<N-T; Jj++)
for (int k=0; k<T; k++)
R[1][J] = matrix[1][]]
+ matrix[i-k][j]+matrix[i][j-k]
+ matrix[i+k][j]+matrix[i][j+k];

rdware Features via Lightweight Profiling

18

Thread 1

Thread 2

SMT locality (Stencil)

#pragma omp parallel for schedule(static,1) ‘
for (int i=T; i<N-T; i++)
for (int j=T; J<N-T; Jj++)
for (int k=0; k<T; k++)
R[1][J] = matrix[1][]]
+ matrix[i-k][j]+matrix[i][j-k]
+ matrix[i+k][j]+matrix[i][j+k];

Thread 1

rdware Features via Lif

Thread 2

18

Thread 1

Thread 2

SMT locality (Stencil)

#pragma omp parallel for schedule(static,1) ‘
for (int i=T; i<N-T; i++)
for (int j=T; J<N-T; Jj++)
for (int k=0; k<T; k++)
R[1][J] = matrix[1][]]
+ matrix[i-k][j]+matrix[i][j-k]
+ matrix[i+k][j]+matrix[i][j+k];

Thread 1

rdware Features via Lif

Thread 2

18

SMT-Analyzer: Analyzing memory access

pattern

A

Memory range

II

!

@

> Loop

T1 T2 T3 T4 T5

threads

Exploiting Modern Hardware Features via Lightweight Profiling

19

SMT-Analyzer: Analyzing memory access

pattern

A

Memory range

;Eji; i
!

I o

> Loop
T1 T2 T3 T4 T5

threads

Exploiting Modern Hardware Features via Lightweight Profiling

19

SMT-Analyzer: Analyzing memory access
pattern

A _ _ [Application TimeJ
1 SPMUE
1 i Reference Type
%‘ Data Address
% i Instruction Pointer
£
s

e

> Loop

T1 T2 T3 T4 T5
threads

Exploiting Modern Hardware Features via Lightweight Profiling 19

SMT-Analyzer: Analyzing memory access
pattern .

A Application Time}
: B
-— P P d ~ ~

~

¥ T
T > T
,/

i W

> Loop

Memory range

T1 T2 T3 T4 T5
threads

Exploiting Modern Hardware Features via Lightweight Profiling 19

Benchmarks

latency

lulesh2.0
IRSmk
needle
srad
LU
Stencil
3D tensor

streamcluster2

lulesh.cc: 604-609
rmatmult3.c: 86-103
needle.cpp:185-187

srad.cpp:136-167

rhs.f:318-328
stencil.c:16-21
mt.c: 22-22

streamcluster.cpp:653

3.6%
78.6%
20%
80.1%
8.4%
95.7%
69.4%
14.1%

+3.1%

+3.2%
+2.99%
+2.47%
+10.6%
+1.55%

+2.4%
+15.2%

inter-thread
intra-thread
inter-thread
intra-thread
inter-thread
inter-thread
inter-thread

inter-thread

1.43x
4.86x
2.37%
1.74x%
1.36x
10.9x
1.44x%
6.72%

20

Benchmarks

overhead OPT method Speedups
latency
lulesh2.0 lulesh.cc: 604-609 3.6% +3.1% inter-thread 1.43x
IRSmk rmatmult3.c: 86-103 78.6% +3.2% intra-thread 4.86x%
needle needle.cpp:185-187 20% +2.99% inter-thread 2.37x%
srad srad.cpp:136-167 80.1% +2.47% intra-thread 1.74x%
LU rhs.f:318-328 8.4% +10.6% inter-thread 1.36x%
Stencil stencil.c:16-21 95.7% +1.55% inter-thread 10.9x
3D tensor mt.c: 22-22 69.4% +2.4% inter-thread 1.44x%

streamcluster2 streamcluster.cpp:653 14.1% +15.2% inter-thread 6.72x

Benchmarks

Benchmarks bottleneck region % of total
latency

lulesh2.0
IRSmk

needle
srad
LU
Stencil
3D tensor

streamcluster2

lulesh.cc: 604-609
rmatmult3.c: 86-103
needle.cpp:185-187
srad.cpp:136-167
rhs.f:318-328
stencil.c:16-21
mt.c: 22-22

streamcluster.cpp:653

3.6%
78.6%
20%
80.1%
8.4%
95.7%
69.4%
14.1%

overhead

+3.1%
+3.2%
+2.99%
+2.47%
+10.6%
+1.55%
+2.4%
+15.2%

A
OPT method

inter-thread

intra-thread
inter-thread
intra-thread
inter-thread
inter-thread

inter-thread

inter-thread

Speedups

1.43x
4.86x
2.37x%
1.74x%
1.36x
10.9x
1.44x%
6.72x

20

Benchmarks

bottleneck region

lulesh2.0
IRSmk

needle
srad
LU
Stencil
3D tensor

streamcluster2

lulesh.cc: 604-609
rmatmult3.c: 86-103
needle.cpp:185-187
srad.cpp:136-167
rhs.f:318-328
stencil.c:16-21
mt.c: 22-22

streamcluster.cpp:653

% of total
latency

78.6%
20%
80.1%
8.4%
95.7%
69.4%
14.1%

A
overhead

+3.1%
+3.2%
+2.99%
+2.47%
+10.6%
+1.55%
+2.4%
+15.2%

A
OPT method

inter-thread
intra-thread
inter-thread
intra-thread
inter-thread
inter-thread
inter-thread

inter-thread

Speedups

1.43x
4.86x
2.37x%
1.74x%
1.36x
10.9x
1.44x%
6.72%

20

Benchmarks

bottleneck region

lulesh2.0
IRSmk

needle
srad
LU
Stencil
3D tensor

streamcluster2

lulesh.cc: 604-609
rmatmult3.c: 86-103
needle.cpp:185-187
srad.cpp:136-167
rhs.f:318-328
stencil.c:16-21
mt.c: 22-22

streamcluster.cpp:653

% of total
latency

78.6%
20%
80.1%
8.4%
95.7%
69.4%
14.1%

A
overhead

+3.1%
+3.2%
+2.99%
+2.47%
+10.6%
+1.55%
+2.4%
+15.2%

A
OPT method

inter-thread
intra-thread
inter-thread
intra-thread
inter-thread
inter-thread
inter-thread

inter-thread

Speedups

1.43x
4.86x
2.37x%
1.74x%
1.36x
10.9x
1.44x%
6.72%

Related work: MACPO (selective instrumentation): 2x - 5x

20

Outline

v Lightweight profiling
v'SMT-aware optimization

* Detection of cache conflicts

* Guiding data-structure layout transformation

Exploiting Modern Hardware Features via Lightweight Profiling

21

Lightweight Detection of Cache
Conflicts

[CGO —2018]

Probir Roy, Shuaiwen Leon Song, Sriram Krishnamoorthy, Xu Liu

WILLIAM & MARY Pacific Northwest

CHARTERED 1691 NATIONAL LABORATORY

Exploiting Modern Hardware Features via Lightweight Profiling

22

Set-associative cache

4— Cache Line =————>

SetO

Set 1

Intel Skylake

L1 cache: 32 KB

Set 63

Exploiting Modern Hardware Features via Lightweight Profiling

23

Set-associative cache

4— Cache Line =————>

Intel Skylake
L1 cache: 32 KB

SetO

Set 1

Set 63

Address

64 Bits

Exploiting Modern Hardware Features via Lightweight Profiling

23

Set-associative cache

4— Cache Line =————>

Intel Skylake
L1 cache: 32 KB

SetO

Set 1

Set 63

TAG

SET Index

Offset

64 Bits

Exploiting Modern Hardware Features via Lightweight Profiling

23

Set-associative cache

4— Cache Line =————>

Intel Skylake
L1 cache: 32 KB

TAG

SET Index

Offset

64 Bits

Exploiting Modern Hardware Features via Lightweight Profiling

23

Set conflict

0]
[1]
[2]

[20,000]

[0] [1] [2]

[127]

double Array [20,000][128];

Exploiting Modern Hardware Features via Lightweight Profiling

Set conflict

Set mapping

128

[0] [1] [2] [127]

[20,000] | |
double Array [20,000][128];

Exploiting Modern Hardware Features via Lightweight Profiling

24

Set conflict

Set mapping

128
0

48

o

[1] [2] [127]

4- Ao
[20,00 P ..
doubie Array [20 000][128];

Exploiting Modern Hardware Features via Lightweight Profiling

24

Set conflict
[1] [2] [127]

[20,00 I ...
doubie Array [20,000][128];

Set mapping

128
0

Exploiting Modern Hardware Features via Lightweight Profiling

Set conflict [N

[1] [2] [127]} Pad

| [
|| L]

1|0

[20,00 I ...
doubie Array [20,000][128];

Set mapping

128
0

Exploiting Modern Hardware Features via Lightweight Profiling 24

Set conflict [N
[1] [2] [127]| Pad

[20,00 I ...
doubie Array [20,000][128];

Set mapping

after padding
128 | Pad

Set mapping

128
0

Exploiting Modern Hardware Features via Lightweight Profiling 24

Set conflict

[1] [2] [127]| Pad

Set mapping |

128
0

[20,00 ||

doubie Array [20,000]

Exploiting Modern Hardware Features via Lightweight Profiling

[128];

Set mapping
after padding

128

Set conflict [N

[1] [2] [127]| Pad .
| Set mapping

|| after padding

1. »
0
[20,00 [T 17

doubie Array [20,000][128];

Set mapping

128
0

Time

Exploiting Modern Hardware Features via Lightweight Profiling 24

Set conflict

Set mapping

Is your application suffering conflict
cache miss?

Trace driven cache simulation

/ Simulation methods\

Memory trace

¥

Cache
simulator

¥

Classifying miss

»_

A[0][0]

A[1][0]

A[2][0]

A[0][0]

A[3][0]

A[2][0]

Time

A[0][0] f=—>

=

Conflict cache miss

Exploiting Modern Hardware Features via Lightweight Profiling

25

Trace driven cache simulation

/ Simulation methods\

Memory trace

¥

Cache
simulator

¥

Classifying miss

Overhead: average 38 times

»_

A[0][0]

A[1][0]

A[2][0]

A[0][0]

A[3][0]

A[2][0]

Time

A[0][0] f=—>

=

Conflict cache miss

Exploiting Modern Hardware Features via Lightweight Profiling

25

Trace driven cache simulation |
Overhead: average 38 times

. . Xiang, Xiaoya, Chen Ding, Hao Luo, and Bin Bao. "HOTL: a
S’m UIatlon mEthOdS higher order theory of locality." ACM SIGPLAN Notices 48, no.
4 (2013): 343-356.

Time

A[1][0] | A[2][0] | A[O][O] [A[3][O] | A[2][0] | .. | A[O][O]

Memory trace » — Al[0][0]

N
Cache »

simulator

¥

Classifying miss Conflict cache miss

Exploiting Modern Hardware Features via Lightweight Profiling o5

Trace driven cache simulation

/ Simulation methods\
Memory trace ‘

N
Cache »

simulator

¥

Classifying miss Conflict cache miss

Exploiting Modern Hardware Features via Lightweight Profiling o5

Overhead: average 38 times

Xiang, Xiaoya, Chen Ding, Hao Luo, and Bin Bao. "HOTL: a
higher order theory of locality." ACM SIGPLAN Notices 48, no.

4 (2013): 343-356.

Time

igh overhead [SIUIEIIOR B0 T ="

T

Trace driven cache simulation

/ Simulation methods\

Memory trace

¥

Cache
simulator

¥

Classifying miss

Overhead: average 38 times

Xiang, Xiaoya, Chen Ding, Hao Luo, and Bin Bao. "HOTL: a
higher order theory of locality." ACM SIGPLAN Notices 48, no.

4 (2013): 343-356.

T

igh overhead PB8IY

A[2][0]

Time

A[0][0] p—

Difficult to simulate hardware

Exploiting Modern Hardware Features via Lightweight Profiling

Conflict cache miss

25

Trace driven cache simulation

/ Simulation methods\

Memory trace

¥

Cache
simulator

¥

Classifying miss

Overhead: average 38 times

Xiang, Xiaoya, Chen Ding, Hao Luo, and Bin Bao. "HOTL: a
higher order theory of locality." ACM SIGPLAN Notices 48, no.

4 (2013): 343-356.

aziol | At | . | Afogio) —me

Theoretically accurate Difficult in practice

Exploiting Modern Hardware Features via Lightweight Profiling o5

A practical low overhead solution

/ Simulation methods\

Memory trace

¥

Cache
simulator

¥

Classifying miss

.

/

26

A practical low overhead solution

/ Simulation methods\

Memory trace

¥

Cache
simulator

¥

Classifying miss

_ /

CCProf

A practical low overhead solution |ccprof

/ Simulation methods\

Memory trace

¥

Cache
simulator

¥

Classifying miss

measurement methoch

.

/

A practical low overhead solution

/ Simulation methods\

Memory trace

¥

Cache
simulator

¥

Classifying miss

CCProf

measurement methoch

Memory

sampling

¥

Statistical
analysis

¥

Classifying miss

.

/

\

/

A practical low overhead solution

/ Simulation methods\

Memory trace

¥

Cache
simulator

¥

Classifying miss

.

/

Overhead

>>

Accuracy

NS

CCProf

measurement methooh

Memory

sampling

¥

Statistical
analysis

¥

Classifying miss

\

/

Hardware-based address sampling (Cont.)

Memory
references

A[0][0]

A[1][0]

A[4][0]

A[0][0]

A[1][0]

A[2][0]

A[0][0]

—p Time

L1 Miss

L1 Miss

L1 Miss

L1 Hit

L1 Hit

L1 Miss

Exploiting Modern Hardware Features via Lightweight Profiling

L1 Miss

27

Hardware-based address sampling (Cont.)

Memory
references

Precise event
sampling (PEBS)

PMU

A[0][O] | A[1][0] | A[4][0] | A[O][O] | A[1][0] | A[2][O] A[0][0] = Time
L1 Miss| L1 Miss | L1 Miss| L1 Hit | L1Hit | L1 Miss L1 Miss
A 4 \ £ \ 4

o [—Jao]

Exploiting Modern Hardware Features via Lightweight Profiling

27

Hardware-based address sampling (Cont.)

Memor .
y —1 A[0][0] | A[1][0] | A[4][0] | A[0][O] | A[2][0] | A[2][0]| .. | A[O][0] f=——> Time
references
L1 Miss | L1 Miss | L1 Miss| L1 Hit | L1 Hit | L1 Miss L1 Miss
4 O ¥

Precise event
sampling (PE8s) ~ RO —— RO | -
1
‘ TAG SET Index Offset \

PMU

' I ' I l I Exploiting Modern Hardware Features via Lightweight Profiling

Hardware-based address sampling (Cont.)

M .
emory —1 A[0][0] | A[2][0] | A[4][0] | A[0][O] | A[1][O] | A[2][O] .. | A[0][0] F——> Time
references
L1 Miss | L1 Miss | L1 Miss| L1 Hit | L1 Hit | L1 Miss L1 Miss
4 2 ¥
Precise event
sampling (E5s) R ol :
1
- ‘ TAG SET Index Offset \
PMU E

' I ' I l I Exploiting Modern Hardware Features via Lightweight Profiling

Hardware-based address sampling (Cont.)

Memory

references

Precise event
sampling (PEBS)

PMU

— Al0][0]

A[1][0]

A[4][0]

A[0][0]

A[1][0]

A[2][0]

A[0][0] f——> Time

L1 Miss

L1 Miss

L1 Miss

L1 Hit

Set conflict?

L1 Hit

L1 Miss

L1 Miss

27

Observation: temporal pattern of conflict
Set mapping

Set mapping [0] [2] 2] [127] after padding
128 [0] || » : 128 +| Pad
[1] || 0 1
2] =J| 17 g8
0000 T T [o
Array [20,000][128]

Time Time

Exploiting Modern Hardware Features via Lightweight Profiling o8

Observation: temporal pattern of conflict (cont.)

Conflict

Time

O o | v o
conflict

Exploiting Modern Hardware Features via Lightweight Profiling

29

Observation: temporal pattern of conflict (cont.)

* * x

Conflict 0 0 32 1 48 0

Time

O o | v o
conflict

Exploiting Modern Hardware Features via Lightweight Profiling

29

Observation: temporal pattern of conflict (cont.)

* * * Time

16 32 48 0 16 3 48 0]
|<—| Distance =3 |—>|<—| Distance =3 I—'|

- Time

O o | v o
conflict

Exploiting Modern Hardware Features via Lightweight Profiling 29

Observation: temporal pattern of conflict (cont.)

* * * Time

16 32 48 0 16 32 48 0]
|<—| Distance =3 |—>|<—| Distance =3 I—'|

Time
conflict
|<—| Distance = 63 |—+

Exploiting Modern Hardware Features via Lightweight Profiling 29

Re-conflict Distance (RCD)

« Number of cache misses in other cache sets between two
consecutive misses in one particular set

}—‘ RCD=2 > RCD=2

Exploiting Modern Hardware Features via Lightweight Profiling

Re-conflict Distance (RCD)

« Number of cache misses in other cache sets between two
consecutive misses in one particular set

}—‘ RCD=2 gl RCD=2
T |

L
»7 RCD=0 —(

Exploiting Modern Hardware Features via Lightweight Profiling

PMU

52 S3 > Time

Re-conflict Distance (RCD)

« Number of cache misses in othe

consecutive misses in one parti Approximate RCD

Set Misses

PMU

30

RCD and it’s contribution

RCD s conflict?

Short Large Yes
Short Small No
Long ~ No

Exploiting Modern Hardware Features via Lightweight Profiling

RCD and it’s contribution

RCD s conflict?

Short Large Yes
Short Small No
Long ~ No

R °

Benchmark glhale —— egression
model
Application

— T

Training

Prediction

Exploiting Modern Hardware Features via Lightweight Profiling 31

Case Study: PolyBench/C -ADI

CCPROF PREDICTS >>> *** CONFLICT MISS *** in LOOP(line: 102). Loop contribution is *** HIGH *** 94.26%

CCPROF PREDICTS >>> *** NO CONFLICT MISS *** in loop(line: 108). Loop's contribution to total L1 miss: 3.13%
CCPROF PREDICTS >>> *** NO CONFLICT MISS *** in loop(line: 117). Loop's contribution to total L1 miss: 0.86%
CCPROF PREDICTS >>> *** NO CONFLICT MISS *** in loop(line: 122). Loop's contribution to total L1 miss: 1.74%

Exploiting Modern Hardware Features via Lightweight Profiling 32

Case Study: PolyBench/C -ADI

CCPROF PREDICTS >>> *** CONFLICT MISS *** in LOOP(line: 102). Loop contribution is *** HIGH *** 94.26%

CCPROF PREDICTS >>> *** NO CONFLICT MISS *** in loop(line: 108). Loop's contribution to total L1 miss: 3.13%
CCPROF PREDICTS >>> *** NO CONFLICT MISS *** in loop(line: 117). Loop's contribution to total L1 miss: 0.86%
CCPROF PREDICTS >>> *** NO CONFLICT MISS *** in loop(line: 122). Loop's contribution to total L1 miss: 1.74%

1//column sweep

2 for (3j=1; J<_PB_N-1; j++) {

3 plLillj] = -c¢ / (a*plillj-1]1+b);

4 q[ilCj] = (-dfuljICi-TIH(SCALAR_VAL (1.0)+SCALAR_VAL (2.0)
xd)*xuljILi] -J FfuljICi+11Ja*qli10j-11)/(a*plill[]

-11+b);

5}

Exploiting Modern Hardware Features via Lightweight Profiling 32

RCD — before and after optimization

Cumulative probability of L1 cache miss

100 A
80 -
60 1
40

20 A

100 A
80 -
60

40

i

20

0

Needleman-Wunsch

Speedup: 3x

8 15 22 29 36 43 50 57 64

Tiny-DNN

:Speedup: 1.09x*

1

8 15 22 29 36 43 50 57 64

100 A

|
r: Speedup: 1.26x

80

100 A

Exploiting Modern Hardware !I:eatures via Light%eight Profiling
adde

Poly ADI

—

1 8 15 22 29 36 43 50 57 64

Kripke
:Speedup: 94.6x*

1 8 15 22 29 36 43 50 57 64

Average RCD

rigina

100 A

80 -

60

40 4

20 1

100 A

80 -

60 4

40 -

20

MKL-FFT

Speedup: 1.13x

15 22 29 36 43 50 57 64

HimenoBMT

Speedup: 1.12x

_

15 22 29 36 43 50 57 64

*Loop level Speedup

33

RCD — before and after optimization

. Nleedleman—Wunsch . Poly ADI - MKL-FFT

ol | » 1 Speedup: 1.13x
I Speedup: 3x 1 Speedup: 1.26x% I P P

60 - I 60 I 60 I
|

40 4

20

. Median overhead: 37%

Cumulative probability of L1 cache miss

1 57 64
[] [] []
Compare with simulation: 38x
80 A I
!
60 I
I
40 - l 40 - l 40 4 l
20 20 I 20 I
[| |
1 8 15 22 29 36 43 50 57 64 1 8 15 22 29 36 43 50 57 64 1 8 15 22 29 36 43 50 57 64

Average RCD

*Loop level Speedup
—— Original Padded

Outline

v Lightweight profiling
v'SMT-aware optimization
v'Detection of cache conflicts

* Guiding data-structure layout transformation

Exploiting Modern Hardware Features via Lightweight Profiling

34

StructSlim: A lightweight profiler to

guide structure splitting

|[CGO - 2016]
Probir Roy , Xu Liu

LWPTool: A Lightweight Profiler to Guide

Data Layout Optimization

[TPDS — 2018]
Chao Yu, Probir Roy, Yuebin Bal Hallong Yang, Xu Liu

|| 35

StructSlim: A lightweight profiler to
guide structure splitting

[CGO —2016]
Probir Roy , Xu Liu

LWPTool: A Lightweight Profiler to Guide

Data Layout Optimization

[TPDS — 2018]
Chao Yu, Probir Roy, Yuebin Bal Hallong Yang, Xu Liu

|| 35

Inefficient data-structure

L1 cache
struct type {int a; int b; int c; int d;}; NS TS e B e e e e R
struct type Arr[N]; alblc|d[al|bfc|d Cache line
for (i = 03 1 < N; i++) : :
B[i] = Arr[i].a + Arr[i].c; e l

Exploiting Modern Hardware Features via Lightweight Profiling 36

Inefficient data-structure

i o
11 cache Utilization = 50%

struct type {int a; int b; int c; int d;}; R N

struct type Arr[N]; alblc|d|alb]|c]|d Cache line

for (i = 03 1 < N; i++) | :
B[i] = Arr[i].a + Arr[i].c; L |

Exploiting Modern Hardware Features via Lightweight Profiling 36

Inefficient data-structure

i o
11 cache Utilization = 50%

struct type {int a; int b; int c; int d;}; B e e

struct type Arr[N]; alblc|d|alb]|c]|d Cache line

for (i = 03 1 < N; i++) : :
B[i] = Arr[i].a + Arr[i].c; e l

Split structure L1 cache

struct type _partl {int a; int c;}; alclalclaiclalc Cache line

struct type_part2 {int b; int d;};

__

Exploiting Modern Hardware Features via Lightweight Profiling 36

Inefficient data-structure

i o
11 cache Utilization = 50%

__

struct type {int a; int b; int c¢; int d;};

struct type Arr[N];

for (i = 0; 1 < N; i++) | :
B[i] = Arr[i].a + Arr[i].c; e I

Split structure

struct type_partl {int a; int c;};
struct type_part2 {int b; int d;};

__

Exploiting Modern Hardware Features via Lightweight Profiling 36

Structure splitting- Questions to ask

How to split structure?

Which data structures are significant?

Which fields to keep together?

Exploiting Modern Hardware Features via Lightweight Profiling

37

Structure splitting- Questions to ask

How to split structure?

Which data structures are significant?

High usage

Which fields to keep together?

Exploiting Modern Hardware Features via Lightweight Profiling

37

Structure splitting- Questions to ask

How to split structure?

Which data structures are significant?

High usage

Which fields to keep together?

Loop level analysis Field affinity

Exploiting Modern Hardware Features via Lightweight Profiling

37

Structure splitting- Questions to ask

How to split structure?

Which data structures are significant?

High usage

Which fields to keep together?

Loop level analysis Field affinity
w e w

Loop 1 Loop 2

Exploiting Modern Hardware Features via Lightweight Profiling

37

Structure splitting- Questions to ask

How to split structure?

Which data structures are significant?

High usage

Which fields to keep together?

Loop level analysis Field affinity
[
w e w

Loop 1 Loop 2 []
P | Field3

Exploiting Modern Hardware Features via Lightweight Profiling

37

Structure splitting- Questions to ask

How to split structure?

Which data structures are significant?

High usage

Which fields to keep together?

Loop level analysis Field affmlty

Loop 1 Loop 2

10%

Exploiting Modern Hardware Features via Lightweight Profiling

37

Structure splitting- Questions to ask

How to split structure?

Which data structures are significant?

High usage

Which fields to keep together?

Loop level analysis Field affinity

[riewz
)

ez
10% %7 [T

Exploiting Modern Hardware Features via Lightweight Profiling

4
]

37

Code-centric and data-centric attribution

38

Code-centric and data-centric attribution

38

Code-centric and data-centric attribution

_ [Application Time}
= g s
7 “ RN

~
e

Reference Type
Data Address
Instruction Pointer

Exploiting Modern Hardware Features via Lightweight Profiling

38

Code-centric and data-centric attribution

RERRR
Application Time
= D
PMU - \x\ ’

T ' b ’
Reference Type 7 D

/
Data Address
Instruction Pointer

Exploiting Modern Hardware Features via Lightweight Profiling

38

Code-centric and data-centric attribution

i
Application Time
PMU E PV . O

TITIY _ b ’
Reference Type ,,’
Data Address \)

Instruction Pointer
Mem Allocation

Monitor

Exploiting Modern Hardware Features via Lightweight Profiling

38

Code-centric and data-centric attribution

i _ O
- Application Time v
i -~

S o P 4
T~ ’ Loop 1

AIRRR ’
Reference Type ,,’
Data Address ,,’ \)

Instruction Pointer

Heap
O

Mem Allocation
Monitor

7’
7’
e
7’

Hardware Features via Lightweight Profiling 38

Code-centric and data-centric attribution

i _ O
- Application Time v
§ - |

- ,
T~ ’ Loop 1

AIRRR ’
Reference Type ,,’
Data Address 7
Instruction Pointer g
Mem Allocation

i
|
Heap I
4
//
4
-
Monitor
Hardware Features via Lightweight Profiling 38

7’
7’
e
7’

Code-centric and data-centric attribution

Heap

‘ ’ Struct 1
N\

Struct 2

Exploiting Modern Hardware Features via Lightweight Profiling

= sample

39

Code-centric and data-centric attribution

Struct 1

— S
— S

Heap

Distances

e — S

Exploiting Modern Hardware Features via Lightweight Profiling

= sample

40

Code-centric and data-centric attribution

Heap
Struct 1 m

—p S Distances ‘

—S’ > Field offset

= sample

Exploiting Modern Hardware Features via Lightweight Profiling 40

Code-centric and data-centric attribution

Heap
Struct 1 m
Distances ‘

S Field offset

@ @

Loop 1 Loop 2 = sample

Exploiting Modern Hardware Features via Lightweight Profiling 40

Code-centric and data-centric attribution

Struct 1

Heap

 Distances
\ 4

Field offset

Loop 2 = sample

Exploiting Modern Hardware Features via Lightweight Profiling

40

Case study: SPEC CPU 2000 ART

typedef struct
{

double *I; double W; double X; double V; double U; double P; double Q; double R;

}f1_neuron

Loops with line Latency percentage Accessed fields
numbers

131-138
559-570
553-554
545-548
615-616
607-608
589-592
575-576
1015-1016

1.59%
8.42% X,Q
1.98% W
10.83% u, I 100%
56.57% P H
14.40% P
000
3.72% v . .

Affinity graph
0.24% | ty grap

Exploiting Modern Hardware Features via Lightweight Profiling a1

Case study: SPEC CPU 2000 ART

typedef struct

{

double *I; double W; double X; double V; double U; double P; double Q; double R;

}f1_neuron

E

13
5§
5°
54
6]
6(
5¢

57

101&\

struct{ double *I double U;}fl neuron IU;
struct{ double Q double X;} fl1 neuron_QX;
struct{ double P;} f1_neuron_P;

struct{ double V;} f1 neuron_V;

struct{ double W;} f1_neuron_W;

struct{ double R;} f1 _neuron_R;

~

/

Exploiting Modern Hardware Features via Lightweight Profiling

41

Benchmarks: speedup, overhead, cache miss

Benchmarks Speedups Runtime L1 miss L2 miss
overhead reduction reduction

179.ART 1.37x 2.05% 46.5% 51.1%

462.Libquantum 1.09x 2.79% 49% 82.6%

TSP 1.09x 2.42% 13.3% 19.9%

Mser 1.03x 2.95% 8.3% 8.4%

CLOMP 1.2 1.25x 16.1% 15.5% 26.4%

Health 1.12x 18.3% 66.7% 90.8%

NN 1.33x 5.21% 87.2% 98.0%
Average 1.18x 7.1%

Related work: Overhead: average 4x

Yan, Jianian, Jiangzhou He, Wenguang Chen, Pen-Chung Yew, and Weimin Zheng. "ASLOP: A field-access affinity-based structure data layout optimizer."

, Lightweight profiling with PMUs can provide deep
Conclusions insights into performance issues cause by memory
hierarchies and poor algorithm choice.

D Simulation methods SMTAnalyzer
cep (PinTool, GPGPUSIm, StructSlim

insight GEMS) CCProf

Shallow Measurement methods

insight (Perf, Oprofile, PAPI)

High overheadLow overhead

Publications

[CGO'18] "Lightweight Detection of Cache Conflicts", Probir Roy, Shuaiwen Leon Song, Sriram
Krishnamoorthy and Xu Liu, The 2018 International Symposium on Code Generation and
Optimization, Feb 24 - 28th, 2018, Vienna, Austria. Acceptance ratio: 28%.

[TACO'18] "NUMA-Caffe: NUMA-Aware Deep Learning Neural Networks", Probir Roy, Shuaiwen
Leon Song, Sriram Krishnamoorthy, Abhinav Vishnu, Dipanjan Sengupta, Xu Liu, ACM Transactions
on Architecture and Code Optimization, 2018.

[TPDS'18] "LWPTool: A Lightweight Profiler to Guide Data Layout Optimization", Chao Yu, Probir
Roy, Yuebin Bai, Hailong Yang, Xu Liu, IEEE Transactions on Parallel and Distributed Systems, 2018.

[HPDC'16] "SMT-Aware Instantaneous Footprint Optimization", Probir Roy, Xu Liu and Shuaiwen
Leon Song, The 25th ACM International Symposium on High-Performance and Distributed
Computing, May 31 - Jun 4, 2016, Kyoto, Japan. Acceptance ratio: 15.5% (20/129).

[CGO'16] "StructSlim: A Lightweight Profiler to Guide Structure Splitting", Probir Roy and Xu Liu,
The 2016 International Symposium on Code Generation and Optimization, Mar 12-18, 2016,
Barcelona, Spain. Acceptance ratio: 23%.

44

Publications

 [CGO'18] "Lightweight Detection of Cache Conflicts", Probir Roy, Shuaiwen Leon Song, Sriram
Krishnamoorthy and Xu Liu, The 2018 International Symposium on Code Generation and
Optimization, Feb 24 - 28th, 2018, Vienna, Austria. Acceptance ratio: 28%.

* [TACO'18] "NUMA-Caffe: NUMA-Aware Deep Learning Neural Networks", Probir Roy, Shuaiwen
Leon Song, Sriram Krishnamoorthy, Abhinav Vishnu, Dipanjan Sengupta, Xu Liu, ACM Transactions
on Architecture and Code Optimization, 2018.

* [TPDS'18] "LWPTool: A Lightweight Profiler to Guide Data Layout Optimization", Chao Yu, Probir
Roy, Yuebin Bai, Hailong Yang, Xu Liu, IEEE Transactions on Parallel and Distributed Systems, 2018.

 [HPDC'16] "SMT-Aware Instantaneous Footprint Optimization", Probir Roy, Xu Liu and Shuaiwen
Leon Song, The 25th ACM International Symposium on High-Performance and Distributed
Computing, May 31 - Jun 4, 2016, Kyoto, Japan. Acceptance ratio: 15.5% (20/129).

* [CGO'16] "StructSlim: A Lightweight Profiler to Guide Structure Splitting", Probir Roy and Xu Liu,
The 2016 International Symposium on Code Generation and Optimization, Mar 12-18@2@4
Barcelona, Spain. Acceptance ratio: 23%. ®

Exploiting Modern Hardware Features via Lightweight Profiling

Challenges ahead

* Program analysis for declarative programming languages

* Domain specific languages provide high-level abstraction
 Machine learning (PyTorch), HPC (HDF5), big-data (SQL)

* Analyzing and optimizing data center and cloud application
* Resource utilization/scheduling in multi-tenant environment
¢ Heterogenous architecture resource management

e Security analysis
* Program analysis to identify vulnerable source code

* Analysis of emerging hardware
* GPU, FPGA, Tensor processing units

45

