
Exploiting Modern Hardware
Features via Lightweight Profiling

Probir Roy
Scalable Tools Workshop’19

1

High performance and challenges

Exploiting Modern Hardware Features via Lightweight Profiling

IBM POWER 9 CPU

2

High performance and challenges

Exploiting Modern Hardware Features via Lightweight Profiling

Amazon CloudFront

IBM POWER 9 CPU

2

High performance and challenges

Exploiting Modern Hardware Features via Lightweight Profiling

Amazon CloudFront

NAMD

IBM POWER 9 CPU

2

High performance and challenges

Exploiting Modern Hardware Features via Lightweight Profiling

Amazon CloudFront

NAMD

MPI

IBM POWER 9 CPU

2

High performance and challenges

Exploiting Modern Hardware Features via Lightweight Profiling

Amazon CloudFront

NAMD

MPI

IBM POWER 9 CPU

Common Goal: Performance

2

High performance and challenges

Exploiting Modern Hardware Features via Lightweight Profiling

Amazon CloudFront

NAMD

MPI

IBM POWER 9 CPU

Common Goal: Performance

Variable characteristics of hardware and
software is a challenge

2

High performance and challenges

Exploiting Modern Hardware Features via Lightweight Profiling

Amazon CloudFront

NAMD

MPI

IBM POWER 9 CPU

Common Goal: Performance

Variable characteristics of hardware and
software is a challenge

Deep insights
2

High performance and challenges

Exploiting Modern Hardware Features via Lightweight Profiling

http://sites.utexas.edu/jdm4372/2016/11/22/sc16-invited-talk-memory-bandwidth-and-system-balance-in-hpc-systems/

3

High performance and challenges

Exploiting Modern Hardware Features via Lightweight Profiling

Peak FLOPS per socket increasing at 50%-60% per year

http://sites.utexas.edu/jdm4372/2016/11/22/sc16-invited-talk-memory-bandwidth-and-system-balance-in-hpc-systems/

3

High performance and challenges

Exploiting Modern Hardware Features via Lightweight Profiling

Peak FLOPS per socket increasing at 50%-60% per year

Memory bandwidth increasing at ~23% per year

http://sites.utexas.edu/jdm4372/2016/11/22/sc16-invited-talk-memory-bandwidth-and-system-balance-in-hpc-systems/

3

High performance and challenges

Exploiting Modern Hardware Features via Lightweight Profiling

Peak FLOPS per socket increasing at 50%-60% per year

Memory bandwidth increasing at ~23% per year

Memory latency increasing at ~4% per year

http://sites.utexas.edu/jdm4372/2016/11/22/sc16-invited-talk-memory-bandwidth-and-system-balance-in-hpc-systems/

3

Steps of performance analysis

Exploiting Modern Hardware Features via Lightweight Profiling

Application

4

Steps of performance analysis

Exploiting Modern Hardware Features via Lightweight Profiling

Application
What?

Why?

How?

4

Steps of performance analysis

Exploiting Modern Hardware Features via Lightweight Profiling

ProfilerApplication
What?

Why?

How?

4

Steps of performance analysis

Exploiting Modern Hardware Features via Lightweight Profiling

ProfilerApplication
What?

Why?

How?

Simulation Measurement

4

Steps of performance analysis

Exploiting Modern Hardware Features via Lightweight Profiling

Profiler

Profiles

Application
What?

Why?

How?

Simulation Measurement

4

Steps of performance analysis

Exploiting Modern Hardware Features via Lightweight Profiling

Profiler

Profiles

Analyzer

Application
What?

Why?

How?

Simulation Measurement

4

Steps of performance analysis

Exploiting Modern Hardware Features via Lightweight Profiling

Profiler

Profiles

Analyzer
Code

optimization

Application
What?

Why?

How?

Simulation Measurement

4

Steps of performance analysis

Exploiting Modern Hardware Features via Lightweight Profiling

Profiler

Profiles

Analyzer
Code

optimization

Application
What?

Why?

How?

Simulation Measurement

4

Steps of performance analysis

Exploiting Modern Hardware Features via Lightweight Profiling

Profiler

Profiles

Analyzer
Code

optimization

Application
What?

Why?

How?

Simulation Measurement

4

Limitations of performance analysis (Cont.)

Low overhead

Deep
insight

Simulation methods
(PinTool, GPGPUSim,

GEMS)

Measurement methods
(Perf, Oprofile, PAPI)

Shallow
insight

High overhead

Exploiting Modern Hardware Features via Lightweight Profiling
5

Limitations of performance analysis (Cont.)

Low overhead

Deep
insight

Simulation methods
(PinTool, GPGPUSim,

GEMS)

Measurement methods
(Perf, Oprofile, PAPI)

Shallow
insight

High overhead
Cache simulation: average 38x (Xiang et al. A higher order theory of locality)

Exploiting Modern Hardware Features via Lightweight Profiling
5

Limitations of performance analysis (Cont.)

Low overhead

Deep
insight

Simulation methods
(PinTool, GPGPUSim,

GEMS)

Measurement methods
(Perf, Oprofile, PAPI)

Shallow
insight

High overhead

Selective instrumentation: 2x - 5x (Rane et al. MACPO)

Cache simulation: average 38x (Xiang et al. A higher order theory of locality)

Exploiting Modern Hardware Features via Lightweight Profiling
5

Limitations of performance analysis (Cont.)

Low overhead

Deep
insight

Simulation methods
(PinTool, GPGPUSim,

GEMS)

Measurement methods
(Perf, Oprofile, PAPI)

Shallow
insight

High overhead

Selective instrumentation: 2x - 5x (Rane et al. MACPO)

Cache simulation: average 38x (Xiang et al. A higher order theory of locality) Profiling: < 10% (Liu et al. A Data-centric Profiler for Parallel Programs)

Exploiting Modern Hardware Features via Lightweight Profiling
5

Limitations of performance analysis (Cont.)

Low overhead

Deep
insight

Simulation methods
(PinTool, GPGPUSim,

GEMS)

Measurement methods
(Perf, Oprofile, PAPI)

Shallow
insight

High overhead

Goal

Selective instrumentation: 2x - 5x (Rane et al. MACPO)

Cache simulation: average 38x (Xiang et al. A higher order theory of locality) Profiling: < 10% (Liu et al. A Data-centric Profiler for Parallel Programs)

Exploiting Modern Hardware Features via Lightweight Profiling
5

Research statement

Exploiting Modern Hardware Features via Lightweight Profiling

Low overhead

Deep
insight

Simulation methods
(PinTool, GPGPUSim,

GEMS)

Measurement methods
(Perf, Oprofile, PAPI)

Shallow
insight

High overhead
6

Research statement

Exploiting Modern Hardware Features via Lightweight Profiling

Low overhead

Deep
insight

Simulation methods
(PinTool, GPGPUSim,

GEMS)

Measurement methods
(Perf, Oprofile, PAPI)

Shallow
insight

High overhead

Lightweight profiling with PMUs can provide
deep insights into performance issues caused by
memory hierarchies and poor algorithm choice

6

Research statement

Exploiting Modern Hardware Features via Lightweight Profiling

Low overhead

Deep
insight

Simulation methods
(PinTool, GPGPUSim,

GEMS)

Measurement methods
(Perf, Oprofile, PAPI)

Shallow
insight

High overhead

Tools to detect memory
and computational

inefficiency

Lightweight profiling with PMUs can provide
deep insights into performance issues caused by
memory hierarchies and poor algorithm choice

6

My research at a glance

Exploiting Modern Hardware Features via Lightweight Profiling

CPU

Cache

Physical Memory

M
em

o
ry

In
ef

fi
ci

en
cy

Programming model

7

My research at a glance

Exploiting Modern Hardware Features via Lightweight Profiling

CPU

Cache

Physical Memory

Simultaneous multi-threading Memory contention

M
em

o
ry

In
ef

fi
ci

en
cy

Programming model

7

My research at a glance

Exploiting Modern Hardware Features via Lightweight Profiling

CPU

Cache

Physical Memory

Simultaneous multi-threading Memory contention

Set-associative cache Conflict miss

M
em

o
ry

In
ef

fi
ci

en
cy

Programming model

7

My research at a glance

Exploiting Modern Hardware Features via Lightweight Profiling

CPU

Cache

Physical Memory

Simultaneous multi-threading Memory contention

Set-associative cache Conflict miss

Cache line utilization

M
em

o
ry

In
ef

fi
ci

en
cy

Programming model

7

My research at a glance

Exploiting Modern Hardware Features via Lightweight Profiling

CPU

Cache

Physical Memory

Simultaneous multi-threading Memory contention

Set-associative cache Conflict miss

Cache line utilization

Non-uniform
memory

Scalability

M
em

o
ry

In
ef

fi
ci

en
cy

Programming model

7

My research at a glance

Exploiting Modern Hardware Features via Lightweight Profiling

CPU

Cache

Physical Memory

Simultaneous multi-threading Memory contention

Set-associative cache Conflict miss

Cache line utilization

Non-uniform
memory

Scalability

M
em

o
ry

In
ef

fi
ci

en
cy

Programming model Charm++

7

My research at a glance

Exploiting Modern Hardware Features via Lightweight Profiling

CPU

Cache

Physical Memory

Simultaneous multi-threading Memory contention

Set-associative cache Conflict miss

Cache line utilization

Non-uniform
memory

Scalability

M
em

o
ry

In
ef

fi
ci

en
cy

Programming model Charm++

7

Outline

• Lightweight profiling

• SMT-aware optimization

• Detection of cache conflicts

• Guiding data-structure layout transformation

Exploiting Modern Hardware Features via Lightweight Profiling
8

Lightweight memory profiling

• Hardware profiling

• Event based sampling
• Intel (Precise event based sampling - PEBS)

• AMD (Instruction based sampling - IBS)

• IBM (Marked event sampling - MRK)

Exploiting Modern Hardware Features via Lightweight Profiling

PMU

9

Lightweight memory profiling

• Hardware profiling

• Event based sampling
• Intel (Precise event based sampling - PEBS)

• AMD (Instruction based sampling - IBS)

• IBM (Marked event sampling - MRK)

Exploiting Modern Hardware Features via Lightweight Profiling

PMU

Application
Time

9

Lightweight memory profiling

• Hardware profiling

• Event based sampling
• Intel (Precise event based sampling - PEBS)

• AMD (Instruction based sampling - IBS)

• IBM (Marked event sampling - MRK)

Exploiting Modern Hardware Features via Lightweight Profiling

PMU

Application
Time

9

Lightweight memory profiling

• Hardware profiling

• Event based sampling
• Intel (Precise event based sampling - PEBS)

• AMD (Instruction based sampling - IBS)

• IBM (Marked event sampling - MRK)

Exploiting Modern Hardware Features via Lightweight Profiling

PMU

Sample Sample Sample Sample

Application
Time

9

Lightweight memory profiling

• Hardware profiling

• Event based sampling
• Intel (Precise event based sampling - PEBS)

• AMD (Instruction based sampling - IBS)

• IBM (Marked event sampling - MRK)

Exploiting Modern Hardware Features via Lightweight Profiling

PMU

Sample Sample Sample Sample

Application
Time

Reference Type

Data Address
Instruction

Pointer

{L1 miss, L2 hit etc.}

9

Outline

✓Lightweight profiling

✓SMT-aware optimization

• Detection of cache conflicts

• Guiding data-structure layout transformation

Exploiting Modern Hardware Features via Lightweight Profiling
10

SMT-Aware Instantaneous Footprint
Optimization

Probir Roy, Shuaiwen Leon Song, Xu Liu

[HPDC – 2016]

Exploiting Modern Hardware Features via Lightweight Profiling
11

SMT (Simultaneous Multi-Threading)

Superscalar 2-way SMT

C
lo

ck
 C

yc
le

s

Thread 1 Thread 2

Idle Cycle

Exploiting Modern Hardware Features via Lightweight Profiling
12

SMT scalability

Runtime ratio = SMT runtime / non-SMT runtime

Shared memory SPMD application

Exploiting Modern Hardware Features via Lightweight Profiling

R
u

n
ti

m
e

ra
ti

o

Lower is better

13

SMT architecture: shared cache

Exploiting Modern Hardware Features via Lightweight Profiling

Thread 1 Thread 2

Core 1

Thread 3 Thread 4

Core 1

L1 Cache L1 Cache

L2 Cache

LLC Cache

14

SMT: Memory scalability

SMT scaling factor (F) = access Latency of SMT/ access Latency of non-SMT

Exploiting Modern Hardware Features via Lightweight Profiling

SM
T

sc
al

in
g

fa
ct

o
r

Lower is better

15

Characterization based on sensitivity

(L,F) Benchmarks Characterization

(high, high) srad, streamcluster1, Lulesh2.0, IRSmk,
LU, 3D tensor, Stencil, streamcluster2,

hotspot, Clomp

potentially sensitive
to mem-centric SMT

optimizations

(high, low) lud, needle, bfs, nn, bp, canneal,
Ferret

not clear if they can
further benefit from
SMT optimizations

(low, high) leucocite, heartwall, pathfinder,
myocyte

little benefit from
mem-centric SMT

optimization

(low, low) b+tree, cfd, kmeans, lavaMD, particle
filter, hotspot3D, blackscholes,

bodytrack, facesim,
Swaptions

good memory
performance with

SMT enabled

L = Memory Access Latency; F = scaling factor

Exploiting Modern Hardware Features via Lightweight Profiling
16

Characterization based on sensitivity

(L,F) Benchmarks Characterization

(high, high) srad, streamcluster1, Lulesh2.0, IRSmk,
LU, 3D tensor, Stencil, streamcluster2,

hotspot, Clomp

potentially sensitive
to mem-centric SMT

optimizations

(high, low) lud, needle, bfs, nn, bp, canneal,
Ferret

not clear if they can
further benefit from
SMT optimizations

(low, high) leucocite, heartwall, pathfinder,
myocyte

little benefit from
mem-centric SMT

optimization

(low, low) b+tree, cfd, kmeans, lavaMD, particle
filter, hotspot3D, blackscholes,

bodytrack, facesim,
Swaptions

good memory
performance with

SMT enabled

L = Memory Access Latency; F = scaling factor

Exploiting Modern Hardware Features via Lightweight Profiling
16

Source of memory contention

Exploiting Modern Hardware Features via Lightweight Profiling

Little/no locality

17

Source of memory contention

Exploiting Modern Hardware Features via Lightweight Profiling

Little/no locality

Intra-thread
SMT thread 2SMT thread 1

time

space

17

Source of memory contention

Exploiting Modern Hardware Features via Lightweight Profiling

Little/no locality

Intra-thread
SMT thread 2SMT thread 1

time

space

17

Source of memory contention

Exploiting Modern Hardware Features via Lightweight Profiling

Little/no locality

Intra-thread
SMT thread 2SMT thread 1

time

space

Optimization: Improve
cache line utilization 17

Source of memory contention

Exploiting Modern Hardware Features via Lightweight Profiling

Little/no locality

Inter-threadIntra-thread
SMT thread 2SMT thread 1

time

space

Optimization: Improve
cache line utilization 17

Source of memory contention

Exploiting Modern Hardware Features via Lightweight Profiling

Little/no locality

Inter-threadIntra-thread
SMT thread 2SMT thread 1

time

space

Optimization: Improve
cache line utilization

time

space

17

Source of memory contention

Exploiting Modern Hardware Features via Lightweight Profiling

Little/no locality

Inter-threadIntra-thread
SMT thread 2SMT thread 1

time

space

Optimization: Improve
cache line utilization

Cache line 1

Cache line 1

time

space

17

Source of memory contention

Exploiting Modern Hardware Features via Lightweight Profiling

Little/no locality

Inter-threadIntra-thread
SMT thread 2SMT thread 1

time

space

Optimization: Improve
cache line utilization

Cache line 1

Cache line 1

time

space

Optimization:
Collaboration 17

SMT locality (Stencil code)

Exploiting Modern Hardware Features via Lightweight Profiling

#pragma omp parallel for
for (int i=T; i<N-T; i++)
for (int j=T; j<N-T; j++)

for (int k=0; k<T; k++)
R[i][j] = matrix[i][j]

+ matrix[i-k][j]+matrix[i][j-k]
+ matrix[i+k][j]+matrix[i][j+k];

18

SMT locality (Stencil code)

Exploiting Modern Hardware Features via Lightweight Profiling

#pragma omp parallel for
for (int i=T; i<N-T; i++)
for (int j=T; j<N-T; j++)

for (int k=0; k<T; k++)
R[i][j] = matrix[i][j]

+ matrix[i-k][j]+matrix[i][j-k]
+ matrix[i+k][j]+matrix[i][j+k];

Th
re

ad
 1

Th
re

ad
 2

18

SMT locality (Stencil code)

Exploiting Modern Hardware Features via Lightweight Profiling

#pragma omp parallel for
for (int i=T; i<N-T; i++)
for (int j=T; j<N-T; j++)

for (int k=0; k<T; k++)
R[i][j] = matrix[i][j]

+ matrix[i-k][j]+matrix[i][j-k]
+ matrix[i+k][j]+matrix[i][j+k];

schedule(static,1)

Th
re

ad
 1

Th
re

ad
 2

18

SMT locality (Stencil code)

Exploiting Modern Hardware Features via Lightweight Profiling

#pragma omp parallel for
for (int i=T; i<N-T; i++)
for (int j=T; j<N-T; j++)

for (int k=0; k<T; k++)
R[i][j] = matrix[i][j]

+ matrix[i-k][j]+matrix[i][j-k]
+ matrix[i+k][j]+matrix[i][j+k];

schedule(static,1)

Th
re

ad
 2Th

re
ad

 1

Th
re

ad
 1

Th
re

ad
 2

18

SMT locality (Stencil code)

Exploiting Modern Hardware Features via Lightweight Profiling

#pragma omp parallel for
for (int i=T; i<N-T; i++)
for (int j=T; j<N-T; j++)

for (int k=0; k<T; k++)
R[i][j] = matrix[i][j]

+ matrix[i-k][j]+matrix[i][j-k]
+ matrix[i+k][j]+matrix[i][j+k];

schedule(static,1)

Th
re

ad
 2Th

re
ad

 1

Th
re

ad
 1

Th
re

ad
 2

18

SMT-Analyzer: Analyzing memory access
pattern

Exploiting Modern Hardware Features via Lightweight Profiling
threads

M
e

m
o

ry
 r

an
ge

T1 T2 T3 T4 T5
Loop

19

SMT-Analyzer: Analyzing memory access
pattern

Exploiting Modern Hardware Features via Lightweight Profiling
threads

M
e

m
o

ry
 r

an
ge

T1 T2 T3 T4 T5

PMU

Loop

19

SMT-Analyzer: Analyzing memory access
pattern

Exploiting Modern Hardware Features via Lightweight Profiling
threads

M
e

m
o

ry
 r

an
ge

T1 T2 T3 T4 T5

PMU S S S S
Application Time

Reference Type

Data Address

Instruction Pointer

Thread

Loop

19

SMT-Analyzer: Analyzing memory access
pattern

Exploiting Modern Hardware Features via Lightweight Profiling
threads

M
e

m
o

ry
 r

an
ge

T1 T2 T3 T4 T5

PMU S S S S
Application Time

Reference Type

Data Address

Instruction Pointer

Thread

Loop

19

Benchmarks

Benchmarks bottleneck region % of total
latency

overhead OPT method Speedups

lulesh2.0 lulesh.cc: 604-609 3.6% +3.1% inter-thread 1.43×

IRSmk rmatmult3.c: 86-103 78.6% +3.2% intra-thread 4.86×

needle needle.cpp:185-187 20% +2.99% inter-thread 2.37×

srad srad.cpp:136-167 80.1% +2.47% intra-thread 1.74×

LU rhs.f:318-328 8.4% +10.6% inter-thread 1.36×

Stencil stencil.c:16-21 95.7% +1.55% inter-thread 10.9×

3D tensor mt.c: 22-22 69.4% +2.4% inter-thread 1.44×

streamcluster2 streamcluster.cpp:653 14.1% +15.2% inter-thread 6.72×

Exploiting Modern Hardware Features via Lightweight Profiling
20

Benchmarks

Benchmarks bottleneck region % of total
latency

overhead OPT method Speedups

lulesh2.0 lulesh.cc: 604-609 3.6% +3.1% inter-thread 1.43×

IRSmk rmatmult3.c: 86-103 78.6% +3.2% intra-thread 4.86×

needle needle.cpp:185-187 20% +2.99% inter-thread 2.37×

srad srad.cpp:136-167 80.1% +2.47% intra-thread 1.74×

LU rhs.f:318-328 8.4% +10.6% inter-thread 1.36×

Stencil stencil.c:16-21 95.7% +1.55% inter-thread 10.9×

3D tensor mt.c: 22-22 69.4% +2.4% inter-thread 1.44×

streamcluster2 streamcluster.cpp:653 14.1% +15.2% inter-thread 6.72×

Exploiting Modern Hardware Features via Lightweight Profiling
20

Benchmarks

Benchmarks bottleneck region % of total
latency

overhead OPT method Speedups

lulesh2.0 lulesh.cc: 604-609 3.6% +3.1% inter-thread 1.43×

IRSmk rmatmult3.c: 86-103 78.6% +3.2% intra-thread 4.86×

needle needle.cpp:185-187 20% +2.99% inter-thread 2.37×

srad srad.cpp:136-167 80.1% +2.47% intra-thread 1.74×

LU rhs.f:318-328 8.4% +10.6% inter-thread 1.36×

Stencil stencil.c:16-21 95.7% +1.55% inter-thread 10.9×

3D tensor mt.c: 22-22 69.4% +2.4% inter-thread 1.44×

streamcluster2 streamcluster.cpp:653 14.1% +15.2% inter-thread 6.72×

Exploiting Modern Hardware Features via Lightweight Profiling
20

Benchmarks

Benchmarks bottleneck region % of total
latency

overhead OPT method Speedups

lulesh2.0 lulesh.cc: 604-609 3.6% +3.1% inter-thread 1.43×

IRSmk rmatmult3.c: 86-103 78.6% +3.2% intra-thread 4.86×

needle needle.cpp:185-187 20% +2.99% inter-thread 2.37×

srad srad.cpp:136-167 80.1% +2.47% intra-thread 1.74×

LU rhs.f:318-328 8.4% +10.6% inter-thread 1.36×

Stencil stencil.c:16-21 95.7% +1.55% inter-thread 10.9×

3D tensor mt.c: 22-22 69.4% +2.4% inter-thread 1.44×

streamcluster2 streamcluster.cpp:653 14.1% +15.2% inter-thread 6.72×

Exploiting Modern Hardware Features via Lightweight Profiling
20

Benchmarks

Benchmarks bottleneck region % of total
latency

overhead OPT method Speedups

lulesh2.0 lulesh.cc: 604-609 3.6% +3.1% inter-thread 1.43×

IRSmk rmatmult3.c: 86-103 78.6% +3.2% intra-thread 4.86×

needle needle.cpp:185-187 20% +2.99% inter-thread 2.37×

srad srad.cpp:136-167 80.1% +2.47% intra-thread 1.74×

LU rhs.f:318-328 8.4% +10.6% inter-thread 1.36×

Stencil stencil.c:16-21 95.7% +1.55% inter-thread 10.9×

3D tensor mt.c: 22-22 69.4% +2.4% inter-thread 1.44×

streamcluster2 streamcluster.cpp:653 14.1% +15.2% inter-thread 6.72×

Exploiting Modern Hardware Features via Lightweight Profiling

Related work: MACPO (selective instrumentation): 2x - 5x

20

Outline

✓Lightweight profiling

✓SMT-aware optimization

•Detection of cache conflicts
• Guiding data-structure layout transformation

Exploiting Modern Hardware Features via Lightweight Profiling
21

Lightweight Detection of Cache
Conflicts

Probir Roy, Shuaiwen Leon Song, Sriram Krishnamoorthy, Xu Liu

[CGO – 2018]

Exploiting Modern Hardware Features via Lightweight Profiling
22

Set-associative cache

Exploiting Modern Hardware Features via Lightweight Profiling

8 waySet 0

Set 1

Set 63

.

.

.

Cache Line

Intel Skylake
L1 cache: 32 KB

23

Set-associative cache

Exploiting Modern Hardware Features via Lightweight Profiling

8 waySet 0

Set 1

Set 63

.

.

.

Cache Line

Address
64 Bits

Intel Skylake
L1 cache: 32 KB

23

Set-associative cache

Exploiting Modern Hardware Features via Lightweight Profiling

8 waySet 0

Set 1

Set 63

.

.

.

Cache Line

Address
64 Bits

TAG SET Index Offset

Intel Skylake
L1 cache: 32 KB

23

Set-associative cache

Exploiting Modern Hardware Features via Lightweight Profiling

8 waySet 0

Set 1

Set 63

.

.

.

Cache Line

Address
64 Bits

TAG SET Index Offset

Intel Skylake
L1 cache: 32 KB

23

Set conflict

Exploiting Modern Hardware Features via Lightweight Profiling

…
…
…

…
…

[0] [1] [2] [127]

[0]

[1]

[2]

[20,000]

double Array [20,000][128];

24

Set conflict

Exploiting Modern Hardware Features via Lightweight Profiling

…
…
…

…
…

[0] [1] [2] [127]

[0]

[1]

[2]

[20,000]

double Array [20,000][128];

Set mapping

0 1 15

16 17 31

32 33 47

48 49 63

0 1 15

16 17 31

48 49 63
…

128

24

Set conflict

Exploiting Modern Hardware Features via Lightweight Profiling

…
…
…

…
…

[0] [1] [2] [127]

[0]

[1]

[2]

[20,000]

double Array [20,000][128];

Set mapping

0 1 15

16 17 31

32 33 47

48 49 63

0 1 15

16 17 31

48 49 63
…

128

24

Set conflict

Exploiting Modern Hardware Features via Lightweight Profiling

…
…
…

…
…

[0] [1] [2] [127]

[0]

[1]

[2]

[20,000]

double Array [20,000][128];

Set mapping

0 1 15

16 17 31

32 33 47

48 49 63

0 1 15

16 17 31

48 49 63
…

128

0 16 32 48 0 16 32 48 0
Time

24

Set conflict

Exploiting Modern Hardware Features via Lightweight Profiling

…
…
…

…
…

[0] [1] [2] [127]

[0]

[1]

[2]

[20,000]

double Array [20,000][128];

Set mapping

0 1 15

16 17 31

32 33 47

48 49 63

0 1 15

16 17 31

48 49 63
…

128

0 16 32 48 0 16 32 48 0
Time

Pad

24

Set conflict

Exploiting Modern Hardware Features via Lightweight Profiling

…
…
…

…
…

[0] [1] [2] [127]

[0]

[1]

[2]

[20,000]

double Array [20,000][128];

Set mapping

0 1 15

16 17 31

32 33 47

48 49 63

0 1 15

16 17 31

48 49 63
…

128

Set mapping
after padding

0 1 15 16

17 32 33

49

51 52 2

4 5 19

21 22 36

55 56 6

18

34 35 50

20

37

7

3

…

Pad128

0 16 32 48 0 16 32 48 0
Time

Pad

24

Set conflict

Exploiting Modern Hardware Features via Lightweight Profiling

…
…
…

…
…

[0] [1] [2] [127]

[0]

[1]

[2]

[20,000]

double Array [20,000][128];

Set mapping

0 1 15

16 17 31

32 33 47

48 49 63

0 1 15

16 17 31

48 49 63
…

128

Set mapping
after padding

0 1 15 16

17 32 33

49

51 52 2

4 5 19

21 22 36

55 56 6

18

34 35 50

20

37

7

3

…

Pad128

0 16 32 48 0 16 32 48 0
Time

Pad

24

Set conflict

Exploiting Modern Hardware Features via Lightweight Profiling

…
…
…

…
…

[0] [1] [2] [127]

[0]

[1]

[2]

[20,000]

double Array [20,000][128];

Set mapping

0 1 15

16 17 31

32 33 47

48 49 63

0 1 15

16 17 31

48 49 63
…

128

Set mapping
after padding

0 1 15 16

17 32 33

49

51 52 2

4 5 19

21 22 36

55 56 6

18

34 35 50

20

37

7

3

…

Pad128

0 16 32 48 0 16 32 48 0
Time

0 817 34 51 4 21 48 55
Time

Pad

24

Set conflict

Exploiting Modern Hardware Features via Lightweight Profiling

…
…
…

…
…

[0] [1] [2] [127]

[0]

[1]

[2]

[20,000]

double Array [20,000][128];

Set mapping

0 1 15

16 17 31

32 33 47

48 49 63

0 1 15

16 17 31

48 49 63
…

128

Set mapping
after padding

0 1 15 16

17 32 33

49

51 52 2

4 5 19

21 22 36

55 56 6

18

34 35 50

20

37

7

3

…

Pad128

0 16 32 48 0 16 32 48 0
Time

0 817 34 51 4 21 48 55
Time

Pad

Is your application suffering conflict
cache miss?

24

L1 cache

Conflict cache miss

Memory trace

Cache
simulator

Classifying miss

Simulation methods

Exploiting Modern Hardware Features via Lightweight Profiling

Trace driven cache simulation

A[0][0] A[1][0] A[2][0] A[0][0] A[3][0] A[2][0] … A[0][0]
Time

25

L1 cache

Conflict cache miss

Memory trace

Cache
simulator

Classifying miss

Simulation methods

Exploiting Modern Hardware Features via Lightweight Profiling

Trace driven cache simulation

A[0][0] A[1][0] A[2][0] A[0][0] A[3][0] A[2][0] … A[0][0]
Time

Overhead: average 38 times

25

L1 cache

Conflict cache miss

Memory trace

Cache
simulator

Classifying miss

Simulation methods

Exploiting Modern Hardware Features via Lightweight Profiling

Trace driven cache simulation

A[0][0] A[1][0] A[2][0] A[0][0] A[3][0] A[2][0] … A[0][0]
Time

Xiang, Xiaoya, Chen Ding, Hao Luo, and Bin Bao. "HOTL: a
higher order theory of locality." ACM SIGPLAN Notices 48, no.
4 (2013): 343-356.

Overhead: average 38 times

25

L1 cache

Conflict cache miss

Memory trace

Cache
simulator

Classifying miss

Simulation methods

Exploiting Modern Hardware Features via Lightweight Profiling

Trace driven cache simulation

A[0][0] A[1][0] A[2][0] A[0][0] A[3][0] A[2][0] … A[0][0]
TimeHigh overhead

Xiang, Xiaoya, Chen Ding, Hao Luo, and Bin Bao. "HOTL: a
higher order theory of locality." ACM SIGPLAN Notices 48, no.
4 (2013): 343-356.

Overhead: average 38 times

25

L1 cache

Conflict cache miss

Memory trace

Cache
simulator

Classifying miss

Simulation methods

Exploiting Modern Hardware Features via Lightweight Profiling

Trace driven cache simulation

A[0][0] A[1][0] A[2][0] A[0][0] A[3][0] A[2][0] … A[0][0]
TimeHigh overhead

Difficult to simulate hardware

Xiang, Xiaoya, Chen Ding, Hao Luo, and Bin Bao. "HOTL: a
higher order theory of locality." ACM SIGPLAN Notices 48, no.
4 (2013): 343-356.

Overhead: average 38 times

25

L1 cache

Conflict cache miss

Memory trace

Cache
simulator

Classifying miss

Simulation methods

Exploiting Modern Hardware Features via Lightweight Profiling

Trace driven cache simulation

A[0][0] A[1][0] A[2][0] A[0][0] A[3][0] A[2][0] … A[0][0]
TimeHigh overhead

Difficult to simulate hardware

Difficult in practiceTheoretically accurate

Xiang, Xiaoya, Chen Ding, Hao Luo, and Bin Bao. "HOTL: a
higher order theory of locality." ACM SIGPLAN Notices 48, no.
4 (2013): 343-356.

Overhead: average 38 times

25

Exploiting Modern Hardware Features via Lightweight Profiling

Memory trace

Cache
simulator

Classifying miss

Simulation methods

A practical low overhead solution

26

Exploiting Modern Hardware Features via Lightweight Profiling

CCProf

Memory trace

Cache
simulator

Classifying miss

Simulation methods

A practical low overhead solution

26

Exploiting Modern Hardware Features via Lightweight Profiling

CCProf

Measurement methods

Memory trace

Cache
simulator

Classifying miss

Simulation methods

A practical low overhead solution

26

Exploiting Modern Hardware Features via Lightweight Profiling

CCProf

Memory
sampling

Statistical
analysis

Classifying miss

Measurement methods

Memory trace

Cache
simulator

Classifying miss

Simulation methods

A practical low overhead solution

26

Exploiting Modern Hardware Features via Lightweight Profiling

CCProf

Memory
sampling

Statistical
analysis

Classifying miss

Measurement methods

Memory trace

Cache
simulator

Classifying miss

Simulation methods

A practical low overhead solution

Overhead

>>

Accuracy

~
26

Hardware-based address sampling (Cont.)

A[0][0] A[1][0] A[4][0] A[0][0] A[1][0] A[2][0] … A[0][0]
Memory

references

L1 Miss L1 Miss L1 Miss L1 Hit L1 Hit L1 Miss L1 Miss

Exploiting Modern Hardware Features via Lightweight Profiling

Time

27

Hardware-based address sampling (Cont.)

A[0][0] A[1][0] A[4][0] A[0][0] A[1][0] A[2][0] … A[0][0]
Memory

references

L1 Miss L1 Miss L1 Miss L1 Hit L1 Hit L1 Miss L1 Miss

Exploiting Modern Hardware Features via Lightweight Profiling

Time

A[0][0] A[4][0] A[2][0]
Precise event

sampling (PEBS)

PMU

27

Hardware-based address sampling (Cont.)

A[0][0] A[1][0] A[4][0] A[0][0] A[1][0] A[2][0] … A[0][0]
Memory

references

L1 Miss L1 Miss L1 Miss L1 Hit L1 Hit L1 Miss L1 Miss

Exploiting Modern Hardware Features via Lightweight Profiling

TAG SET Index Offset

Time

A[0][0] A[4][0] A[2][0]
Precise event

sampling (PEBS)

PMU

27

Hardware-based address sampling (Cont.)

A[0][0] A[1][0] A[4][0] A[0][0] A[1][0] A[2][0] … A[0][0]
Memory

references

L1 Miss L1 Miss L1 Miss L1 Hit L1 Hit L1 Miss L1 Miss

Exploiting Modern Hardware Features via Lightweight Profiling

TAG SET Index Offset

S0 S4 S2

Time

A[0][0] A[4][0] A[2][0]
Precise event

sampling (PEBS)

PMU

27

Hardware-based address sampling (Cont.)

A[0][0] A[1][0] A[4][0] A[0][0] A[1][0] A[2][0] … A[0][0]
Memory

references

L1 Miss L1 Miss L1 Miss L1 Hit L1 Hit L1 Miss L1 Miss

Exploiting Modern Hardware Features via Lightweight Profiling

TAG SET Index Offset

S0 S4 S2

Time

A[0][0] A[4][0] A[2][0]
Precise event

sampling (PEBS)

PMU

Set conflict?

27

Observation: temporal pattern of conflict

Exploiting Modern Hardware Features via Lightweight Profiling

…
…
…

…
…

[0] [1] [2] [127]

[0]

[1]

[2]

[20,000]

Array [20,000][128]

0 16 32 48 0 16 32 48 0 0 017 34 51 4 21 48 …

Set mapping

0 1 15

16 17 31

32 33 47

48 49 63

0 1 15

16 17 31

48 49 63
…

128

Set mapping
after padding

0 1 15 16

17 32 33

49

51 52 2

4 5 19

21 22 36

55 56 6

18

34 35 50

20

37

7

3

…

Pad128

TimeTime

28

Observation: temporal pattern of conflict (cont.)

Exploiting Modern Hardware Features via Lightweight Profiling

0 16 32 48 0 16 32 48 0

0 017 34 51 4 21 48 …

Conflict

No
conflict

Time

Time

29

Observation: temporal pattern of conflict (cont.)

Exploiting Modern Hardware Features via Lightweight Profiling

0 16 32 48 0 16 32 48 0

0 017 34 51 4 21 48 …

Conflict

No
conflict

Time

Time

29

Observation: temporal pattern of conflict (cont.)

Exploiting Modern Hardware Features via Lightweight Profiling

0 16 32 48 0 16 32 48 0

0 017 34 51 4 21 48 …

Distance = 3 Distance = 3

Conflict

No
conflict

Time

Time

29

Observation: temporal pattern of conflict (cont.)

Exploiting Modern Hardware Features via Lightweight Profiling

0 16 32 48 0 16 32 48 0

0 017 34 51 4 21 48 …

Distance = 3 Distance = 3

Distance = 63

Conflict

No
conflict

Time

Time

29

Re-conflict Distance (RCD)

• Number of cache misses in other cache sets between two
consecutive misses in one particular set

S1 S2 S0 S1 S3 S2 S1 S0

RCD=2 RCD=2

Exploiting Modern Hardware Features via Lightweight Profiling

Set Misses Time

30

Re-conflict Distance (RCD)

• Number of cache misses in other cache sets between two
consecutive misses in one particular set

S1 S2 S0 S1 S3 S2 S1 S0

RCD=2 RCD=2

Exploiting Modern Hardware Features via Lightweight Profiling

Set Misses Time

PMU S1 S1 S2 S3

RCD=0

Time

30

Re-conflict Distance (RCD)

• Number of cache misses in other cache sets between two
consecutive misses in one particular set

S1 S2 S0 S1 S3 S2 S1 S0

RCD=2 RCD=2

Exploiting Modern Hardware Features via Lightweight Profiling

Set Misses Time

PMU S1 S1 S2 S3

RCD=0

Time

Approximate RCD

30

RCD and it’s contribution
RCD Count Is conflict?

Short Large Yes

Short Small No

Long ~ No

Exploiting Modern Hardware Features via Lightweight Profiling
31

RCD and it’s contribution
RCD Count Is conflict?

Short Large Yes

Short Small No

Long ~ No

Exploiting Modern Hardware Features via Lightweight Profiling

Regression
model

Benchmark RCD

Application RCD Model
Conflict

No-Conflict

P
re

d
ic

ti
o

n
Tr

ai
n

in
g

31

Case Study: PolyBench/C -ADI

Exploiting Modern Hardware Features via Lightweight Profiling

CCPROF PREDICTS >>> *** CONFLICT MISS *** in LOOP(line: 102). Loop contribution is *** HIGH *** 94.26%
CCPROF PREDICTS >>> *** NO CONFLICT MISS *** in loop(line: 108). Loop's contribution to total L1 miss: 3.13%
CCPROF PREDICTS >>> *** NO CONFLICT MISS *** in loop(line: 117). Loop's contribution to total L1 miss: 0.86%
CCPROF PREDICTS >>> *** NO CONFLICT MISS *** in loop(line: 122). Loop's contribution to total L1 miss: 1.74%

32

Case Study: PolyBench/C -ADI

Exploiting Modern Hardware Features via Lightweight Profiling

CCPROF PREDICTS >>> *** CONFLICT MISS *** in LOOP(line: 102). Loop contribution is *** HIGH *** 94.26%
CCPROF PREDICTS >>> *** NO CONFLICT MISS *** in loop(line: 108). Loop's contribution to total L1 miss: 3.13%
CCPROF PREDICTS >>> *** NO CONFLICT MISS *** in loop(line: 117). Loop's contribution to total L1 miss: 0.86%
CCPROF PREDICTS >>> *** NO CONFLICT MISS *** in loop(line: 122). Loop's contribution to total L1 miss: 1.74%

32

RCD – before and after optimization

Speedup: 3× Speedup: 1.26×
Speedup: 1.13×

Speedup: 1.09×* Speedup: 94.6×* Speedup: 1.12×

*Loop level SpeedupExploiting Modern Hardware Features via Lightweight Profiling
33

RCD – before and after optimization

Speedup: 3× Speedup: 1.26×
Speedup: 1.13×

Speedup: 1.09×* Speedup: 94.6×* Speedup: 1.12×

*Loop level Speedup

Median overhead: 37%
Compare with simulation: 38x

Exploiting Modern Hardware Features via Lightweight Profiling
33

Outline

✓Lightweight profiling

✓SMT-aware optimization

✓Detection of cache conflicts

•Guiding data-structure layout transformation

Exploiting Modern Hardware Features via Lightweight Profiling
34

StructSlim: A lightweight profiler to
guide structure splitting

Probir Roy , Xu Liu
[CGO – 2016]

LWPTool: A Lightweight Profiler to Guide
Data Layout Optimization

Chao Yu, Probir Roy, Yuebin Bai, Hailong Yang, Xu Liu
[TPDS – 2018]

Exploiting Modern Hardware Features via Lightweight Profiling
35

StructSlim: A lightweight profiler to
guide structure splitting

Probir Roy , Xu Liu
[CGO – 2016]

LWPTool: A Lightweight Profiler to Guide
Data Layout Optimization

Chao Yu, Probir Roy, Yuebin Bai, Hailong Yang, Xu Liu
[TPDS – 2018]

Exploiting Modern Hardware Features via Lightweight Profiling
35

Inefficient data-structure

struct type {int a; int b; int c; int d;};
struct type Arr[N];
for (i = 0; i < N; i++)

B[i] = Arr[i].a + Arr[i].c;

a b c d a b c d

L1 cache

Exploiting Modern Hardware Features via Lightweight Profiling

Cache line

36

Inefficient data-structure

struct type {int a; int b; int c; int d;};
struct type Arr[N];
for (i = 0; i < N; i++)

B[i] = Arr[i].a + Arr[i].c;

a b c d a b c d

L1 cache

Exploiting Modern Hardware Features via Lightweight Profiling

Cache line

Utilization = 50%

36

Inefficient data-structure

struct type {int a; int b; int c; int d;};
struct type Arr[N];
for (i = 0; i < N; i++)

B[i] = Arr[i].a + Arr[i].c;

a b c d a b c d

L1 cache

Exploiting Modern Hardware Features via Lightweight Profiling

Cache line

a c a c a c a c

L1 cache

struct type_part1 {int a; int c;};
struct type_part2 {int b; int d;};

Split structure

Cache line

Utilization = 50%

36

Inefficient data-structure

struct type {int a; int b; int c; int d;};
struct type Arr[N];
for (i = 0; i < N; i++)

B[i] = Arr[i].a + Arr[i].c;

a b c d a b c d

L1 cache

Exploiting Modern Hardware Features via Lightweight Profiling

Cache line

a c a c a c a c

L1 cache

struct type_part1 {int a; int c;};
struct type_part2 {int b; int d;};

Split structure

Cache line

Utilization = 50%

Utilization = 100%

36

Structure splitting- Questions to ask

Exploiting Modern Hardware Features via Lightweight Profiling

How to split structure?
Which data structures are significant?

Which fields to keep together?

37

Structure splitting- Questions to ask

Exploiting Modern Hardware Features via Lightweight Profiling

How to split structure?
Which data structures are significant?

High usage
Which fields to keep together?

37

Structure splitting- Questions to ask

Exploiting Modern Hardware Features via Lightweight Profiling

How to split structure?
Which data structures are significant?

High usage
Which fields to keep together?

Loop level analysis Field affinity

37

Structure splitting- Questions to ask

Exploiting Modern Hardware Features via Lightweight Profiling

How to split structure?
Which data structures are significant?

High usage
Which fields to keep together?

Loop level analysis Field affinity

Field 1

Field 2

Field 3Loop 1 Loop 2

37

Structure splitting- Questions to ask

Exploiting Modern Hardware Features via Lightweight Profiling

How to split structure?
Which data structures are significant?

High usage
Which fields to keep together?

Loop level analysis Field affinity

Field 1

Field 2

Field 3Loop 1 Loop 2

Field 1

Field 2

Field 2

Field 3

or

37

Structure splitting- Questions to ask

Exploiting Modern Hardware Features via Lightweight Profiling

How to split structure?
Which data structures are significant?

High usage
Which fields to keep together?

Loop level analysis Field affinity

Field 1

Field 2

Field 3Loop 1 Loop 2

Field 1

Field 2

Field 2

Field 3

or

90%

10%
37

Structure splitting- Questions to ask

Exploiting Modern Hardware Features via Lightweight Profiling

How to split structure?
Which data structures are significant?

High usage
Which fields to keep together?

Loop level analysis Field affinity

Field 1

Field 2

Field 3Loop 1 Loop 2

Field 1

Field 2

Field 2

Field 3

or

90%

10%
37

Code-centric and data-centric attribution

Exploiting Modern Hardware Features via Lightweight Profiling
38

Code-centric and data-centric attribution

Exploiting Modern Hardware Features via Lightweight Profiling

PMU

38

S S S S
Application Time

Reference Type

Data Address

Instruction Pointer

Code-centric and data-centric attribution

Exploiting Modern Hardware Features via Lightweight Profiling

PMU

38

S S S S
Application Time

Reference Type

Data Address

Instruction Pointer

Code-centric and data-centric attribution

Exploiting Modern Hardware Features via Lightweight Profiling

PMU
Loop 1

Loop 2

38

S S S S
Application Time

Reference Type

Data Address

Instruction Pointer

Code-centric and data-centric attribution

Exploiting Modern Hardware Features via Lightweight Profiling

PMU
Loop 1

Loop 2

Mem Allocation
Monitor

38

S S S S
Application Time

Reference Type

Data Address

Instruction Pointer

Code-centric and data-centric attribution

Exploiting Modern Hardware Features via Lightweight Profiling

PMU
Loop 1

Loop 2

Heap

Mem Allocation
Monitor

38

S S S S
Application Time

Reference Type

Data Address

Instruction Pointer

Code-centric and data-centric attribution

Exploiting Modern Hardware Features via Lightweight Profiling

PMU
Loop 1

Loop 2

Heap

Mem Allocation
Monitor

38

Code-centric and data-centric attribution

Exploiting Modern Hardware Features via Lightweight Profiling

PMU

Loop 1

Loop 2

Heap

Struct 1

Struct 2

S

S

S

S

S

S

S
S

S = sample

39

Code-centric and data-centric attribution

Exploiting Modern Hardware Features via Lightweight Profiling

S = sample

PMU
Heap

Struct 1

S

S
S

S
S

Distances

40

Code-centric and data-centric attribution

Exploiting Modern Hardware Features via Lightweight Profiling

S = sample

PMU
Heap

Struct 1

S

S
S

S
S

Distances

Distances

Field offset

40

Code-centric and data-centric attribution

Exploiting Modern Hardware Features via Lightweight Profiling

S = sample

PMU
Heap

Struct 1

S

S
S

S
S

Distances

Field 1

Field 2

Field 3Loop 1 Loop 2

Distances

Field offset

40

Code-centric and data-centric attribution

Exploiting Modern Hardware Features via Lightweight Profiling

S = sample

PMU
Heap

Struct 1

S

S
S

S
S

Distances

Field 1

Field 2

Field 3Loop 1 Loop 2

Distances

Field offset

90%

10%
40

Case study: SPEC CPU 2000 ART

Loops with line
numbers

Latency percentage Accessed fields

131-138 1.59% U,P

559-570 8.42% X,Q

553-554 1.98% W

545-548 10.83% U, I

615-616 56.57% P

607-608 14.40% P

589-592 2.25% U, P

575-576 3.72% V

1015-1016 0.24% I

Exploiting Modern Hardware Features via Lightweight Profiling

typedef struct
{

double *I; double W; double X; double V; double U; double P; double Q; double R;
}f1_neuron

U

I P

Q X

R W V

86% 5%

100%

Affinity graph

41

Case study: SPEC CPU 2000 ART

Loops with line
numbers

Latency percentage Accessed fields

131-138 1.59% U,P

559-570 8.42% X,Q

553-554 1.98% W

545-548 10.83% U, I

615-616 56.57% P

607-608 14.40% P

589-592 2.25% U, P

575-576 3.72% V

1015-1016 0.24% I

Exploiting Modern Hardware Features via Lightweight Profiling

typedef struct
{

double *I; double W; double X; double V; double U; double P; double Q; double R;
}f1_neuron

U

I P

Q X

R W V

86% 5%

100%

Affinity graph

typedef struct{ double *I; double U;} f1_neuron_IU;
typedef struct{ double Q; double X;} f1_neuron_QX;
typedef struct{ double P;} f1_neuron_P;
typedef struct{ double V;} f1_neuron_V;
typedef struct{ double W;} f1_neuron_W;
typedef struct{ double R;} f1_neuron_R;

41

Benchmarks: speedup, overhead, cache miss
Benchmarks Speedups Runtime

overhead
L1 miss

reduction
L2 miss

reduction

179.ART 1.37× 2.05% 46.5% 51.1%

462.Libquantum 1.09× 2.79% 49% 82.6%

TSP 1.09× 2.42% 13.3% 19.9%

Mser 1.03× 2.95% 8.3% 8.4%

CLOMP 1.2 1.25× 16.1% 15.5% 26.4%

Health 1.12× 18.3% 66.7% 90.8%

NN 1.33× 5.21% 87.2% 98.0%

Average 1.18× 7.1%

Exploiting Modern Hardware Features via Lightweight Profiling

gcc -O3

Yan, Jianian, Jiangzhou He, Wenguang Chen, Pen-Chung Yew, and Weimin Zheng. "ASLOP: A field-access affinity-based structure data layout optimizer."

Related work: Overhead: average 4x

42

Conclusions

Exploiting Modern Hardware Features via Lightweight ProfilingLow overhead

Deep
insight

Simulation methods
(PinTool, GPGPUSim,

GEMS)

Measurement methods
(Perf, Oprofile, PAPI)

Shallow
insight

High overhead

SMTAnalyzer

StructSlim

CCProf

Lightweight profiling with PMUs can provide deep
insights into performance issues cause by memory
hierarchies and poor algorithm choice.

43

Publications

• [CGO'18] "Lightweight Detection of Cache Conflicts", Probir Roy, Shuaiwen Leon Song, Sriram
Krishnamoorthy and Xu Liu, The 2018 International Symposium on Code Generation and
Optimization, Feb 24 - 28th, 2018, Vienna, Austria. Acceptance ratio: 28%.

• [TACO'18] "NUMA-Caffe: NUMA-Aware Deep Learning Neural Networks", Probir Roy, Shuaiwen
Leon Song, Sriram Krishnamoorthy, Abhinav Vishnu, Dipanjan Sengupta, Xu Liu, ACM Transactions
on Architecture and Code Optimization, 2018.

• [TPDS'18] "LWPTool: A Lightweight Profiler to Guide Data Layout Optimization", Chao Yu, Probir
Roy, Yuebin Bai, Hailong Yang, Xu Liu, IEEE Transactions on Parallel and Distributed Systems, 2018.

• [HPDC'16] "SMT-Aware Instantaneous Footprint Optimization", Probir Roy, Xu Liu and Shuaiwen
Leon Song, The 25th ACM International Symposium on High-Performance and Distributed
Computing, May 31 - Jun 4, 2016, Kyoto, Japan. Acceptance ratio: 15.5% (20/129).

• [CGO'16] "StructSlim: A Lightweight Profiler to Guide Structure Splitting", Probir Roy and Xu Liu,
The 2016 International Symposium on Code Generation and Optimization, Mar 12-18, 2016,
Barcelona, Spain. Acceptance ratio: 23%.

Exploiting Modern Hardware Features via Lightweight Profiling
44

Publications

• [CGO'18] "Lightweight Detection of Cache Conflicts", Probir Roy, Shuaiwen Leon Song, Sriram
Krishnamoorthy and Xu Liu, The 2018 International Symposium on Code Generation and
Optimization, Feb 24 - 28th, 2018, Vienna, Austria. Acceptance ratio: 28%.

• [TACO'18] "NUMA-Caffe: NUMA-Aware Deep Learning Neural Networks", Probir Roy, Shuaiwen
Leon Song, Sriram Krishnamoorthy, Abhinav Vishnu, Dipanjan Sengupta, Xu Liu, ACM Transactions
on Architecture and Code Optimization, 2018.

• [TPDS'18] "LWPTool: A Lightweight Profiler to Guide Data Layout Optimization", Chao Yu, Probir
Roy, Yuebin Bai, Hailong Yang, Xu Liu, IEEE Transactions on Parallel and Distributed Systems, 2018.

• [HPDC'16] "SMT-Aware Instantaneous Footprint Optimization", Probir Roy, Xu Liu and Shuaiwen
Leon Song, The 25th ACM International Symposium on High-Performance and Distributed
Computing, May 31 - Jun 4, 2016, Kyoto, Japan. Acceptance ratio: 15.5% (20/129).

• [CGO'16] "StructSlim: A Lightweight Profiler to Guide Structure Splitting", Probir Roy and Xu Liu,
The 2016 International Symposium on Code Generation and Optimization, Mar 12-18, 2016,
Barcelona, Spain. Acceptance ratio: 23%.

Exploiting Modern Hardware Features via Lightweight Profiling

??
?

?
44

Challenges ahead

• Program analysis for declarative programming languages
• Domain specific languages provide high-level abstraction

• Machine learning (PyTorch), HPC (HDF5), big-data (SQL)

• Analyzing and optimizing data center and cloud application
• Resource utilization/scheduling in multi-tenant environment

• Heterogenous architecture resource management

• Security analysis
• Program analysis to identify vulnerable source code

• Analysis of emerging hardware
• GPU, FPGA, Tensor processing units

Exploiting Modern Hardware Features via Lightweight Profiling
45

