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Peak FLOPS per socket increasing at 50%-60% per year

Memory bandwidth increasing at ~23% per year

Memory latency increasing at ~4% per year

http://sites.utexas.edu/jdm4372/2016/11/22/sc16-invited-talk-memory-bandwidth-and-system-balance-in-hpc-systems/
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Limitations of performance analysis (Cont.)

Simulation methods
Deep (PinTool, GPGPUSIm,
insight GEMS)

Shallow Measurement methods

insight

(Perf, Oprofile, PAPI)

High overhead Low overhead
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E‘ijztweight profiling with PMUs can provide
Research stateme p insights into performance issues caused by
memory hierarchies and poor algorithm choice

D Simulation methods Tools to detect memory
| e_ep (PinTool, GPGPUSIm, and computational
insight GEMS) inefficiency
Shallow Measurement methods
insight (Perf, Oprofile, PAPI)

High overhead Low overhead
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Outline

[ * Lightweight profiling

* SMT-aware optimization
» Detection of cache conflicts
* Guiding data-structure layout transformation
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Outline

v'Lightweight profiling

v SMT-aware optimization

» Detection of cache conflicts
* Guiding data-structure layout transformation
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SMT-Aware Instantaneous Footprint
Optimization

[HPDC — 2016]

Probir Roy, Shuaiwen Leon Song, Xu Liu

WILLIAM & MARY Pacific Northwest

CHARTERED 1691 NATIONAL LABORATORY
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SMT (Simultaneous Multi-Threading)
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SMT scalability

Lower is better
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SMT architecture: shared cache

Core 1l

Thread 3

Core 1

L1 Cache

L2 Cache

LLC Cache
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Memory scalability

SMT
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Characterization based on sensitivity

L = Memory Access Latency; F = scaling factor

(high, high) srad, streamclusterl, Lulesh2.0, IRSmk, potentially sensitive

LU, 3D tensor, Stencil, streamcluster2, to mem-centric SMT

hotspot, Clomp optimizations
(high, low) lud, needle, bfs, nn, bp, canneal, not clear if they can
Ferret further benefit from

SMT optimizations

(low, high) leucocite, heartwall, pathfinder, little benefit from
myocyte mem-centric SMT

optimization

(low, low) b+tree, cfd, kmeans, lavaMD, particle good memory
filter, hotspot3D, blackscholes, performance with

bodytrack, facesim, SMT enabled

Swaptions
16



Characterization based on sensitivity

L = Memory Access Latency; F = scaling factor

" (high, high)

(high, low)

(low, high)

(low, low)

srad, streamclusterl, Lulesh2.0, IRSmk,
LU, 3D tensor, Stencil, streamcluster2,
hotspot, Clomp

potentially sensitive
to mem-centric SMT
optimizations

lud, needle, bfs, nn, bp, canneal, not clear if they can
Ferret ,  further benefit from
SMT optimizations

leucocite, heartwall, pathfinder, little benefit from
myocyte mem-centric SMT

optimization

b+tree, cfd, kmeans, lavaMD, particle good memory
filter, hotspot3D, blackscholes, performance with

bodytrack, facesim, SMT enabled

Swaptions
16



Source of memory contention

Little/no locality
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SMT locality (Stencil code)

#pragma omp parallel for
for (int i=T; i<N-T; i++)
for (int j=T; Jj<N-T; j++)
for (int k=0; k<T; k++)
R[1][J] = matrix[1i][]]
+ matrix[i-k][j]+matrix[i][j-k]
+ matrix[i+k][j]+matrix[i][j+k];
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Thread 1

Thread 2

SMT locality (Stencil code)

#pragma omp parallel for
for (int i=T; i<N-T; i++)
for (int j=T; J<N-T; j++)
for (int k=0; k<T; k++)
R[1][3] = matrix[1][]]
+ matrix[i-k][j]+matrix[i][j-k]
+ matrix[i+k][j]+matrix[i][j+k];
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Thread 1

Thread 2

SMT locality (Stencil )
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SMT-Analyzer: Analyzing memory access

pattern

A

Memory range

II

!

@

> Loop

T1 T2 T3 T4 T5

threads
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SMT-Analyzer: Analyzing memory access
pattern

A _ _ [ Application TimeJ
1 SPMUE
1 i Reference Type
%‘ Data Address
% i Instruction Pointer
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threads
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SMT-Analyzer: Analyzing memory access
pattern .
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Benchmarks

latency

lulesh2.0
IRSmk
needle
srad
LU
Stencil
3D tensor

streamcluster2

lulesh.cc: 604-609
rmatmult3.c: 86-103
needle.cpp:185-187

srad.cpp:136-167

rhs.f:318-328
stencil.c:16-21
mt.c: 22-22

streamcluster.cpp:653

3.6%
78.6%
20%
80.1%
8.4%
95.7%
69.4%
14.1%

+3.1%

+3.2%
+2.99%
+2.47%
+10.6%
+1.55%

+2.4%
+15.2%

inter-thread
intra-thread
inter-thread
intra-thread
inter-thread
inter-thread
inter-thread

inter-thread

1.43x
4.86x
2.37%
1.74x%
1.36x
10.9x
1.44x%
6.72%
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Benchmarks

overhead OPT method Speedups
latency
lulesh2.0 lulesh.cc: 604-609 3.6% +3.1% inter-thread 1.43x
IRSmk rmatmult3.c: 86-103 78.6% +3.2% intra-thread 4.86x%
needle needle.cpp:185-187 20% +2.99% inter-thread 2.37x%
srad srad.cpp:136-167 80.1% +2.47% intra-thread 1.74x%
LU rhs.f:318-328 8.4% +10.6% inter-thread 1.36x%
Stencil stencil.c:16-21 95.7% +1.55% inter-thread 10.9x
3D tensor mt.c: 22-22 69.4% +2.4% inter-thread 1.44x%

streamcluster2 streamcluster.cpp:653 14.1% +15.2% inter-thread 6.72x
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Benchmarks bottleneck region % of total
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Related work: MACPO (selective instrumentation): 2x - 5x
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Outline

v Lightweight profiling
v'SMT-aware optimization

* Detection of cache conflicts

* Guiding data-structure layout transformation
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Lightweight Detection of Cache
Conflicts

[CGO —2018]

Probir Roy, Shuaiwen Leon Song, Sriram Krishnamoorthy, Xu Liu

WILLIAM & MARY Pacific Northwest

CHARTERED 1691 NATIONAL LABORATORY
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Set-associative cache

4— Cache Line =————>

SetO

Set 1

Intel Skylake

L1 cache: 32 KB

Set 63
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Set-associative cache

4— Cache Line =————>

Intel Skylake
L1 cache: 32 KB

SetO

Set 1

Set 63

Address

64 Bits
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Set-associative cache

4— Cache Line =————>

Intel Skylake
L1 cache: 32 KB

SetO

Set 1

Set 63

TAG

SET Index

Offset

64 Bits
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Set-associative cache

4— Cache Line =————>

Intel Skylake
L1 cache: 32 KB

TAG

SET Index

Offset

64 Bits
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Set conflict

0]
[1]
[2]

[20,000]

[0] [1] [2]

[127]

double Array [20,000][128];
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Set conflict

Set mapping

128

[0] [1] [2] [127]

[20,000] | |
double Array [20,000][128];
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Set conflict

Set mapping

128
0

48

o

[1] [2] [127]

4- Ao
[20,00 P ..
doubie Array [20 000][128];
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Set conflict
[1] [2] [127]

[20,00 I ...
doubie Array [20,000][128];

Set mapping

128
0
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Set conflict [N

[1] [2] [127]} Pad

| [
|| L]

1|0

[20,00 I ...
doubie Array [20,000][128];

Set mapping

128
0
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Set conflict [N
[1] [2] [127]| Pad

[20,00 I ...
doubie Array [20,000][128];

Set mapping

after padding
128 | Pad

Set mapping

128
0
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Set conflict

[1] [2] [127]| Pad

Set mapping |

128
0

[20,00 ||

doubie Array [20,000]

Exploiting Modern Hardware Features via Lightweight Profiling

[128];

Set mapping
after padding
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Set conflict [N

[1] [2] [127]| Pad .
| Set mapping

|| after padding

1. »
0
[20,00 [T 17

doubie Array [20,000][128];

Set mapping

128
0

Time
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Set conflict

Set mapping

Is your application suffering conflict
cache miss?




Trace driven cache simulation

/ Simulation methods\

Memory trace

¥

Cache
simulator

¥

Classifying miss

»_

A[0][0]

A[1][0]

A[2][0]

A[0][0]

A[3][0]

A[2][0]

Time

A[0][0] f=—>

=

Conflict cache miss
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Trace driven cache simulation

/ Simulation methods\

Memory trace

¥

Cache
simulator

¥

Classifying miss

Overhead: average 38 times

»_

A[0][0]

A[1][0]

A[2][0]

A[0][0]

A[3][0]

A[2][0]

Time

A[0][0] f=—>

=

Conflict cache miss
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Trace driven cache simulation |
Overhead: average 38 times

. . Xiang, Xiaoya, Chen Ding, Hao Luo, and Bin Bao. "HOTL: a
S’m UIatlon mEthOdS higher order theory of locality." ACM SIGPLAN Notices 48, no.
4 (2013): 343-356.

Time

A[1][0] | A[2][0] | A[O][O] [ A[3][O] | A[2][0] | .. | A[O][O]

Memory trace » — Al[0][0]

N
Cache »

simulator

¥

Classifying miss Conflict cache miss
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Trace driven cache simulation

/ Simulation methods\
Memory trace ‘

N
Cache »

simulator

¥

Classifying miss Conflict cache miss

Exploiting Modern Hardware Features via Lightweight Profiling o5

Overhead: average 38 times

Xiang, Xiaoya, Chen Ding, Hao Luo, and Bin Bao. "HOTL: a
higher order theory of locality." ACM SIGPLAN Notices 48, no.

4 (2013): 343-356.

Time
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Trace driven cache simulation

/ Simulation methods\

Memory trace

¥

Cache
simulator

¥

Classifying miss

Overhead: average 38 times

Xiang, Xiaoya, Chen Ding, Hao Luo, and Bin Bao. "HOTL: a
higher order theory of locality." ACM SIGPLAN Notices 48, no.

4 (2013): 343-356.

T

igh overhead PB8IY

A[2][0]

Time

A[0][0] p—

Difficult to simulate hardware
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Trace driven cache simulation

/ Simulation methods\

Memory trace

¥

Cache
simulator

¥

Classifying miss

Overhead: average 38 times

Xiang, Xiaoya, Chen Ding, Hao Luo, and Bin Bao. "HOTL: a
higher order theory of locality." ACM SIGPLAN Notices 48, no.

4 (2013): 343-356.

aziol | At | . | Afogio) —me

Theoretically accurate Difficult in practice
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A practical low overhead solution

/ Simulation methods\

Memory trace

¥

Cache
simulator

¥

Classifying miss

.

/
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A practical low overhead solution

/ Simulation methods\

Memory trace

¥

Cache
simulator

¥

Classifying miss

\_ /

CCProf




A practical low overhead solution  |ccprof

/ Simulation methods\

Memory trace

¥

Cache
simulator

¥

Classifying miss

measurement methoch

.
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A practical low overhead solution

/ Simulation methods\

Memory trace

¥

Cache
simulator

¥

Classifying miss

CCProf

measurement methoch

Memory

sampling

¥

Statistical
analysis

¥

Classifying miss

.

/

\
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A practical low overhead solution

/ Simulation methods\

Memory trace

¥

Cache
simulator

¥

Classifying miss

.

/

Overhead

>>

Accuracy

NS

CCProf

measurement methooh

Memory

sampling

¥

Statistical
analysis

¥

Classifying miss

\

/




Hardware-based address sampling (Cont.)

Memory
references

A[0][0]

A[1][0]

A[4][0]

A[0][0]

A[1][0]

A[2][0]

A[0][0]

—p Time

L1 Miss

L1 Miss

L1 Miss

L1 Hit

L1 Hit

L1 Miss
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Hardware-based address sampling (Cont.)

Memory
references

Precise event
sampling (PEBS)

PMU

A[0][O] | A[1][0] | A[4][0] | A[O][O] | A[1][0] | A[2][O] A[0][0] = Time
L1 Miss| L1 Miss | L1 Miss| L1 Hit | L1Hit | L1 Miss L1 Miss
A 4 \ £ \ 4

o [—Jao]
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Hardware-based address sampling (Cont.)

Memor .
y —1 A[0][0] | A[1][0] | A[4][0] | A[0][O] | A[2][0] | A[2][0]| .. | A[O][0] f=——> Time
references
L1 Miss | L1 Miss | L1 Miss| L1 Hit | L1 Hit | L1 Miss L1 Miss
4 O ¥

Precise event
sampling (PE8s) ~ RO —— RO | -
1
‘ TAG SET Index Offset \

PMU

' I ' I l I Exploiting Modern Hardware Features via Lightweight Profiling



Hardware-based address sampling (Cont.)

M .
emory —1 A[0][0] | A[2][0] | A[4][0] | A[0][O] | A[1][O] | A[2][O] .. | A[0][0] F——> Time
references
L1 Miss | L1 Miss | L1 Miss| L1 Hit | L1 Hit | L1 Miss L1 Miss
4 2 ¥
Precise event
sampling (E5s) R ol :
1
- ‘ TAG SET Index Offset \
PMU E

' I ' I l I Exploiting Modern Hardware Features via Lightweight Profiling



Hardware-based address sampling (Cont.)

Memory

references

Precise event
sampling (PEBS)

PMU

— Al0][0]

A[1][0]

A[4][0]

A[0][0]

A[1][0]

A[2][0]

A[0][0] f——> Time

L1 Miss

L1 Miss

L1 Miss

L1 Hit

Set conflict?

L1 Hit

L1 Miss

L1 Miss

27



Observation: temporal pattern of conflict
Set mapping

Set mapping [0] [2] 2] [127] after padding
128 [0] || » : 128 +| Pad
[1] || 0 1
2] =J| 17 g8
0000 T T [ o
Array [20,000][128]

Time Time
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Observation: temporal pattern of conflict (cont.)

Conflict

Time

O o | v o
conflict
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29



Observation: temporal pattern of conflict (cont.)

* * x

Conflict 0 0 32 1 48 0

Time

O o | v o
conflict
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Observation: temporal pattern of conflict (cont.)

* * * Time

16 32 48 0 16 3 48 0]
|<—| Distance =3 |—>|<—| Distance =3 I—'|

- Time

O o | v o
conflict
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Observation: temporal pattern of conflict (cont.)

* * * Time

16 32 48 0 16 32 48 0]
|<—| Distance =3 |—>|<—| Distance =3 I—'|

Time
conflict
|<—| Distance = 63 |—+
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Re-conflict Distance (RCD)

« Number of cache misses in other cache sets between two
consecutive misses in one particular set

}—‘ RCD=2 > RCD=2
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Re-conflict Distance (RCD)

« Number of cache misses in other cache sets between two
consecutive misses in one particular set

}—‘ RCD=2 gl RCD=2
T |

L
»7 RCD=0 —(
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PMU

52 S3 > Time




Re-conflict Distance (RCD)

« Number of cache misses in othe

consecutive misses in one parti Approximate RCD

Set Misses

PMU

30



RCD and it’s contribution

RCD s conflict?

Short Large Yes
Short Small No
Long ~ No
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RCD and it’s contribution

RCD s conflict?

Short Large Yes
Short Small No
Long ~ No

R °

Benchmark glhale —— egression
model
Application

— T

Training

Prediction
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Case Study: PolyBench/C -ADI

CCPROF PREDICTS >>> *** CONFLICT MISS *** in LOOP(line: 102). Loop contribution is *** HIGH *** 94.26%

CCPROF PREDICTS >>> *** NO CONFLICT MISS *** in loop(line: 108). Loop's contribution to total L1 miss: 3.13%
CCPROF PREDICTS >>> *** NO CONFLICT MISS *** in loop(line: 117). Loop's contribution to total L1 miss: 0.86%
CCPROF PREDICTS >>> *** NO CONFLICT MISS *** in loop(line: 122). Loop's contribution to total L1 miss: 1.74%
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Case Study: PolyBench/C -ADI

CCPROF PREDICTS >>> *** CONFLICT MISS *** in LOOP(line: 102). Loop contribution is *** HIGH *** 94.26%

CCPROF PREDICTS >>> *** NO CONFLICT MISS *** in loop(line: 108). Loop's contribution to total L1 miss: 3.13%
CCPROF PREDICTS >>> *** NO CONFLICT MISS *** in loop(line: 117). Loop's contribution to total L1 miss: 0.86%
CCPROF PREDICTS >>> *** NO CONFLICT MISS *** in loop(line: 122). Loop's contribution to total L1 miss: 1.74%

1//column sweep

2 for (3j=1; J<_PB_N-1; j++) {

3 plLillj] = -c¢ / (a*plillj-1]1+b);

4 q[ilCj] = (-dfuljICi-TIH(SCALAR_VAL (1.0)+SCALAR_VAL (2.0)
xd)*xuljILi] -J FfuljICi+11Ja*qli10j-11)/(a*plill[]

-11+b);

5}
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RCD — before and after optimization

Cumulative probability of L1 cache miss

100 A
80 -
60 1
40

20 A

100 A
80 -
60

40

i

20

0

Needleman-Wunsch

Speedup: 3x

8 15 22 29 36 43 50 57 64

Tiny-DNN

:Speedup: 1.09x*

1

8 15 22 29 36 43 50 57 64

100 A

|
r: Speedup: 1.26x

80

100 A

Exploiting Modern Hardware !I:eatures via Light%eight Profiling
adde

Poly ADI

—

1 8 15 22 29 36 43 50 57 64

Kripke
:Speedup: 94.6x*

1 8 15 22 29 36 43 50 57 64

Average RCD

rigina

100 A

80 -

60

40 4

20 1

100 A

80 -

60 4

40 -

20

MKL-FFT

Speedup: 1.13x

15 22 29 36 43 50 57 64

HimenoBMT

Speedup: 1.12x

_

15 22 29 36 43 50 57 64

*Loop level Speedup
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RCD — before and after optimization

. Nleedleman—Wunsch . Poly ADI - MKL-FFT

ol | » 1 Speedup: 1.13x
I Speedup: 3x 1 Speedup: 1.26x% I P P

60 - I 60 I 60 I
|

40 4

20

. Median overhead: 37%

Cumulative probability of L1 cache miss

1 57 64
[ ] [ ] [ ]
Compare with simulation: 38x
80 A I
!
60 I
I
40 - l 40 - l 40 4 l
20 20 I 20 I
[ | |
1 8 15 22 29 36 43 50 57 64 1 8 15 22 29 36 43 50 57 64 1 8 15 22 29 36 43 50 57 64

Average RCD

*Loop level Speedup
—— Original Padded



Outline

v Lightweight profiling
v'SMT-aware optimization
v'Detection of cache conflicts

* Guiding data-structure layout transformation

Exploiting Modern Hardware Features via Lightweight Profiling

34



StructSlim: A lightweight profiler to

guide structure splitting

|[CGO - 2016]
Probir Roy , Xu Liu

LWPTool: A Lightweight Profiler to Guide

Data Layout Optimization

[TPDS — 2018]
Chao Yu, Probir Roy, Yuebin Bal Hallong Yang, Xu Liu
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StructSlim: A lightweight profiler to
guide structure splitting

[CGO —2016]
Probir Roy , Xu Liu

LWPTool: A Lightweight Profiler to Guide

Data Layout Optimization

[TPDS — 2018]
Chao Yu, Probir Roy, Yuebin Bal Hallong Yang, Xu Liu
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Inefficient data-structure

L1 cache
struct type {int a; int b; int c; int d;}; NS TS e B e e e e R
struct type Arr[N]; alblc|d[al|bfc|d Cache line
for (i = 03 1 < N; i++) : :
B[i] = Arr[i].a + Arr[i].c; e l
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Inefficient data-structure

i o
11 cache Utilization = 50%

struct type {int a; int b; int c; int d;}; R N

struct type Arr[N]; alblc|d|alb]|c]|d Cache line

for (i = 03 1 < N; i++) | :
B[i] = Arr[i].a + Arr[i].c; L |

Exploiting Modern Hardware Features via Lightweight Profiling 36



Inefficient data-structure

i o
11 cache Utilization = 50%

struct type {int a; int b; int c; int d;}; B e e

struct type Arr[N]; alblc|d|alb]|c]|d Cache line

for (i = 03 1 < N; i++) : :
B[i] = Arr[i].a + Arr[i].c; e l

Split structure L1 cache

struct type _partl {int a; int c;}; alclalclaiclalc Cache line

struct type_part2 {int b; int d;};

______________________________________________________________
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Inefficient data-structure

i o
11 cache Utilization = 50%

______________________________________________________________

struct type {int a; int b; int c¢; int d;};

struct type Arr[N];

for (i = 0; 1 < N; i++) | :
B[i] = Arr[i].a + Arr[i].c; e I

Split structure

struct type_partl {int a; int c;};
struct type_part2 {int b; int d;};

______________________________________________________________

Exploiting Modern Hardware Features via Lightweight Profiling 36



Structure splitting- Questions to ask

How to split structure?

Which data structures are significant?

Which fields to keep together?

Exploiting Modern Hardware Features via Lightweight Profiling
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Structure splitting- Questions to ask

How to split structure?

Which data structures are significant?

High usage

Which fields to keep together?
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Structure splitting- Questions to ask

How to split structure?

Which data structures are significant?

High usage

Which fields to keep together?

Loop level analysis Field affinity
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Structure splitting- Questions to ask

How to split structure?

Which data structures are significant?

High usage

Which fields to keep together?

Loop level analysis Field affinity
w e w

Loop 1 Loop 2
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Structure splitting- Questions to ask

How to split structure?

Which data structures are significant?

High usage

Which fields to keep together?

Loop level analysis Field affinity
[
w e w

Loop 1 Loop 2 [ ]
P | Field3
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Structure splitting- Questions to ask

How to split structure?

Which data structures are significant?

High usage

Which fields to keep together?

Loop level analysis Field affmlty

Loop 1 Loop 2

10%
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Structure splitting- Questions to ask

How to split structure?

Which data structures are significant?

High usage

Which fields to keep together?

Loop level analysis Field affinity

[ riewz
)

ez
10% %7 [ T
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Code-centric and data-centric attribution

38
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Code-centric and data-centric attribution

_ [ Application Time}
= g s
7 “ RN

~
e

Reference Type
Data Address
Instruction Pointer
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Code-centric and data-centric attribution

RERRR
Application Time
= D
PMU - \x\ ’

T ' b ’
Reference Type 7 D

/
Data Address
Instruction Pointer
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Code-centric and data-centric attribution

i
Application Time
PMU E PV . O

TITIY _ b ’
Reference Type ,,’
Data Address \ )

Instruction Pointer
Mem Allocation

Monitor
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Code-centric and data-centric attribution

i _ O
- Application Time v
i -~

S o P 4
T~ ’ Loop 1

AIRRR ’
Reference Type ,,’
Data Address ,,’ \ )

Instruction Pointer

Heap
O

Mem Allocation
Monitor

7’
7’
e
7’
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Code-centric and data-centric attribution

i _ O
- Application Time v
§ - |

- ,
T~ ’ Loop 1

AIRRR ’
Reference Type ,,’
Data Address 7
Instruction Pointer g
Mem Allocation

i
|
Heap I
4
//
4
-
Monitor
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Code-centric and data-centric attribution

Heap

‘ ’ Struct 1
N\

Struct 2
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Code-centric and data-centric attribution

Struct 1

— S
— S

Heap

Distances

e — S
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Code-centric and data-centric attribution

Heap
Struct 1 m

—p S Distances ‘

—S’ > Field offset

= sample
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Code-centric and data-centric attribution

Heap
Struct 1 m
Distances ‘

S Field offset

@ @

Loop 1 Loop 2 = sample
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Code-centric and data-centric attribution

Struct 1

Heap

 Distances
\ 4

Field offset

Loop 2 = sample

Exploiting Modern Hardware Features via Lightweight Profiling
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Case study: SPEC CPU 2000 ART

typedef struct
{

double *I; double W; double X; double V; double U; double P; double Q; double R;

}f1_neuron

Loops with line Latency percentage Accessed fields
numbers

131-138
559-570
553-554
545-548
615-616
607-608
589-592
575-576
1015-1016

1.59%
8.42% X,Q
1.98% W
10.83% u, I 100%
56.57% P H
14.40% P
000
3.72% v . .

Affinity graph
0.24% | ty grap
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Case study: SPEC CPU 2000 ART

typedef struct

{

double *I; double W; double X; double V; double U; double P; double Q; double R;

}f1_neuron

E

13
5§
5°
54
6]
6(
5¢

57

101&\

struct{ double *I double U;}fl neuron IU;
struct{ double Q double X;} fl1 neuron_QX;
struct{ double P;} f1_neuron_P;

struct{ double V;} f1 neuron_V;

struct{ double W;} f1_neuron_W;

struct{ double R;} f1 _neuron_R;

~

/
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Benchmarks: speedup, overhead, cache miss

Benchmarks Speedups Runtime L1 miss L2 miss
overhead reduction reduction

179.ART 1.37x 2.05% 46.5% 51.1%

462.Libquantum 1.09x 2.79% 49% 82.6%

TSP 1.09x 2.42% 13.3% 19.9%

Mser 1.03x 2.95% 8.3% 8.4%

CLOMP 1.2 1.25x 16.1% 15.5% 26.4%

Health 1.12x 18.3% 66.7% 90.8%

NN 1.33x 5.21% 87.2% 98.0%
Average 1.18x 7.1%

Related work: Overhead: average 4x

Yan, Jianian, Jiangzhou He, Wenguang Chen, Pen-Chung Yew, and Weimin Zheng. "ASLOP: A field-access affinity-based structure data layout optimizer."



, Lightweight profiling with PMUs can provide deep
Conclusions insights into performance issues cause by memory
hierarchies and poor algorithm choice.

D Simulation methods SMTAnalyzer
cep (PinTool, GPGPUSIm, StructSlim

insight GEMS) CCProf

Shallow Measurement methods

insight (Perf, Oprofile, PAPI)

High overhead ...........Low overhead
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Challenges ahead

* Program analysis for declarative programming languages

* Domain specific languages provide high-level abstraction
 Machine learning (PyTorch), HPC (HDF5), big-data (SQL)

* Analyzing and optimizing data center and cloud application
* Resource utilization/scheduling in multi-tenant environment
¢ Heterogenous architecture resource management

e Security analysis
* Program analysis to identify vulnerable source code

* Analysis of emerging hardware
* GPU, FPGA, Tensor processing units
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