
© 2019 Cray Inc.

agontarek
andrewg@cray.com

COMMON TOOLS INTERFACE 

(CTI)
Scalable Tools Workshop

7/29/2019



© 2019 Cray Inc.

• Overview of Cray debugging toolbelt

• Learn about what is available on Cray systems
• MPIR discussion

• Why a new solution is needed

• Brief intro to CTI

• Github link to CTI repo: https://github.com/common-tools-interface/cti

Agenda

2

https://github.com/common-tools-interface/cti


© 2019 Cray Inc.

CRAY 
DEBUGGING 
TOOLS
From 30,000 feet

3



© 2019 Cray Inc.

• Commercial third party debugging products
• Forge toolsuite from ARM/Allinea
• Totalview debugger from RogueWave

• Available on Cray systems

Cray debugging tools overview

4



© 2019 Cray Inc.

• Gdb4hpc
• Conventional CLI based interactive parallel debugger
• Look and feel of gdb – syntax is inspired by gdb!

• Debug your application at scale

• Valgrind4hpc
• Parallel valgrind based debugging tool (memcheck)

• Aids in detection of memory leaks and errors in parallel applications
• Aggregates like errors across PEs/threads

Cray debugging tools overview

5



© 2019 Cray Inc.

• STAT (Stack Trace Analysis Tool)
• Scalable generation of a single merged stack backtrace for the application
• Open source tool from LLNL
• GUI based tool (stat-gui/stat-view) along with cli tools (stat-cl)

• Cray contributes code changes back upstream (ARM port)
• Gain insight into application behavior at a function level

• ATP (Abnormal Termination Processing)
• Scalable core file generation and analysis when application crashes

• Generates a merged stack backtrace akin to stat

• Selection algorithm to dump unique core files

Cray debugging tools overview

6



© 2019 Cray Inc.

• CCDB (Cray Comparative DeBugger)

• NOT a traditional debugger!
• Compare two applications side-by-side

• Focus on the data – not state and internal operations

• GUI tool that interacts with gdb4hpc

Cray debugging tools overview

7



© 2019 Cray Inc.

• CTI (Common Tools Interface)

• Single API to support tools across all Cray systems
• WLM agnostic – write to API once, add WLM implementation in API

• Application placement information, launch tool daemons on compute nodes

• MRNET (Multicast Reduction NETwork)
• Scalable communication library for tools

• Paradyn
• Dynamic instrumentation libraries

Tool infrastructure

8



© 2019 Cray Inc.

• Shasta/XC
• All tools are supported on XC systems
• These tools will continue to be supported on Shasta

• User interaction will be the same on Shasta as it is today

• Clusters
• Gdb4hpc, valgrind4hpc and CCDB only

• Tools are compiler/network agnostic at their core
• Sockets for communication

• Standard DWARF debug_info

What’s supported?

9



© 2019 Cray Inc.

WHY A COMMON TOOLS INTERFACE?

10



© 2019 Cray Inc.

• Problem: Cray needs to support several tools across diverse ecosystems

• Multiple product lines
• High end HPC systems like Shasta/XC/XK

• Traditional cluster systems from the CS line

• Multiple workload managers
• ALPS based

• PBS/Moab
• SLURM based

• Requests for many more!

Towards a Common Tools Interface

11



© 2019 Cray Inc.

• State of the art: MPIR

• Good solution for its time!
• Problematic in current era of 

HPC
• Required to attach onto the 

starter process

• Multiple simultaneous tools?
• Efficiency/scalability issues

What about MPIR?

12



© 2019 Cray Inc.

• Efficiency/scalability issues
• Requires placement data to be in-process

• Read by Tool FE via ptrace (bad) or /proc/<pid>/mem (better)
• Alternative: read directly from WLM DB instead

• Consider
• Debug attach case: Application is running in a batch script, attach onto 

application from another terminal

• Need to connect to node where starter process is running in order to 
bootstrap!

What about MPIR?

13

WLM 
DB

Starter 
process

Tool 
FE



© 2019 Cray Inc.

• Efficiency/scalability issues (cont.)
• Data requirements are unnecessary

• Requires a MPIR_PROCDESC entry for each PE

• ~22 MB of overhead at 1M PEs from struct alone

• Efficient implementations will store only unique 
host_names/executable_names

• What about thousands of simultaneous jobs?

What about MPIR?

14



© 2019 Cray Inc.

• Efficiency/scalability issues (cont.)
• Cray tools care more about placement on the 

FE versus obtaining executable names/pids

• Number of unique compute nodes

• Hostname of each unique compute node
• Number of PEs placed on that compute node

• Obtain pid/exec path directly on compute node
• Approach

• Scale with number of compute nodes vs Pes

• Better scaling with modern HPC systems

What about MPIR?

15



© 2019 Cray Inc.

• Tool daemon launching
• Extension exists to MPIR!

• OPTIONAL👎
• Clunky interface

• Write a variable via debugger to launch tool daemon
• No generic interface for projecting files to computes

• Use lustre/NFS??? Doesn’t scale for DSO lookup!
• No way to control tool daemon specific environment

• SSH directly to node vs srun vs alps toolhelper vs ???

• Implement N different ways for launching tool daemons…

What about MPIR?

16



© 2019 Cray Inc.

WHAT IS CTI?

17



© 2019 Cray Inc.

• The Common Tools Interface aims to provide an API that provides…
• Way to query information about an application
• Launch tool daemons alongside an application

• Project binaries, libraries, and files alongside tool daemons

• Setup tool daemon specific environment
• Unique storage location for writing files (e.g. TMPDIR)

• Allow for multiple tool daemons to co-exist
• All while being implementation agnostic…

• Take care of common bootstrapping code that tool writers don’t necessarily 
care about

What is CTI?

18



© 2019 Cray Inc.

• CTI started as a side project in ~2011

• Goal: Explore possibility of rapid prototyping of new tools
• Became CDST component in ~2013

• Cray started supporting SLURM systems

• Both ALPS and SLURM made things tricky for tools
• Multiple code pathways – YUCK!

• Porting our tools to use CTI saved development cycles and maintenance 
costs over time

• Stand alone cray-cti module in ~2015

• TODAY: Re-written in C++ on FE and open sourced (available on github)

Towards a common interface

19



© 2019 Cray Inc.

• Key object concepts
• fe_iface

• C interface defining actual API

• Frontend
• Singleton object matching system type
• Abstract base class requires real 

implementation to be provided
• App

• Represents application either registered 
or launched via API calls

CTI FE architecture

20



© 2019 Cray Inc.

• Key object concepts (cont.)
• Session

• Represents a remote location on 
compute nodes

• Stores state about what has previously 
been projected into session

• Multiple tool daemons can share a 
session

• Manifest
• List of binaries, libraries, and files to be 

projected to compute nodes

CTI FE architecture

21



© 2019 Cray Inc.

• Key object concepts (cont.)
• Ownership hierarchy

• Frontend owns associated apps

• Apps own associated sessions

• Sessions own associated manifests
• When parent object destructed, all 

owned objects also destructed
• Iface mapping

CTI FE architecture

22



© 2019 Cray Inc.

• A cti_app_id_t is required to do (almost) anything

• Launch with barrier variant also provided

• WLM extensions provided via cti_open_ops() for registering an existing app

CTI FE interface – Application launch/register

23



© 2019 Cray Inc.

• Once a cti_app_id_t is obtained can query placement info

CTI FE interface – query placement info

24



© 2019 Cray Inc.

• Need a session handle to launch tool daemons

• No communication occurs in our implementation
• API allows underlying implementations to do so if needed
• cti_createSession() requires owning cti_app_id_t

CTI FE interface – Session

25



© 2019 Cray Inc.

• Need a manifest to build a list of dependencies required by tool daemon

• cti_createManifest() requires owning cti_session_id_t

• Once created, add dependencies to manifest

• cti_addManifestBinary() adds dso dependencies by default

CTI FE interface – Manifest

26



© 2019 Cray Inc.

• Use cti_execToolDaemon() to asynchronously launch a tool daemon alongside 
application

• Requires a valid cti_manifest_id_t even if there are no additional dependencies

• fstr tool daemon binary implicitly added to manifest
• Synchronous launch mechanism for future work

• Would allow error checking

CTI FE interface – Tool Daemon Launch

27



© 2019 Cray Inc.

• BE iface used to obtain information about that node

• Link against tool daemon binary launched via cti_execToolDaemon()
• Obtain application PIDs

CTI BE interface

28



© 2019 Cray Inc.

• Community involvement as MPIR replacement
• If tools begin adopting this interface, better chance of new WLM implementors 

providing a reference CTI implementation for their ecosystem

• Provides simple examples of tool requirements for bootstrapping

• Add TBON communication layer
• Ability to gather error information

• Scalable projection
• Persistent TBON shared between tools?

• Additional BE APIs to determine system capabilities
• Am I on a GPU node?

Future work

29



© 2019 Cray Inc.

• Lots of material left uncovered!

• Basic examples exist in tests/examples
• common-tools-interface org on github

• Reach out with any questions

• Cray is hiring!
• Many positions open in PE

Wrap up

30



© 2019 Cray Inc.

SAFE HARBOR 
STATEMENT

This presentation may contain forward-looking 
statements that are based on our current 
expectations. Forward looking statements may 
include statements about our financial 
guidance and expected operating results, our 
opportunities and future potential, our product 
development and new product introduction 
plans, our ability to expand and penetrate our 
addressable markets and other statements that 
are not historical facts.

These statements are only predictions and 
actual results may materially vary from those 
projected. Please refer to Cray's documents 
filed with the SEC from time to time concerning 
factors that could affect the Company and 
these forward-looking statements. 

31



Q U E S T I O N S ?

andrewg@cray.com

@cray_inc

linkedin.com/company/cray-inc-/

cray.com
agontarek


