Making Elfutils’ libdw Thread-Safe

Srdan Milakovic, Jonathon Anderson
Department of Computer Science
Rice University



Changes for Thread-Safety

Main Modifications

- Made Dwarf Abbrev hash table thread-safe by
adding atomics to mediate concurrent accesses

- Added Pthread-based thread-safety to libdw
memory management

Minor modifications

- Made _libelf version* thread-local, to work
correctly when threaded



Dwarf Abbrev Background

 Dwarf stores most of its information in tree-
based structures

* Libdw caches .dwarf abbrev section subtrees
as Dwarf Abbrev structures

- Each Dwarf Abbrev is referenced by a unique
abbreviation code, used as the key for the
Dwarf Abbrev hash table (shown here)

 Lookups are frequent when scanning Dwarf
information; mutual exclusion would be slow

* We enhanced the original to work in parallel!


https://sourceware.org/git/?p=elfutils.git;a=blob;f=libdw/libdwP.h;hb=HEAD#l246

Dwarf Abbrev Concurrent Hash Table

 Based on original implementation, but with
enhancements for concurrency

 Supports only insert and find, iteration is not
needed for Dwarf Abbrev

 Only one entry per key, keys are unique

 Only whole-table operation is resizing, other
operations use per-entry atomics to mediate

 Threads waiting for a resize to complete can
‘“help” by initializing and copying entries,
mediated by atomic counters



Libdw Memory Management

 Libdw allocates small structures in internal
caches

* Using malloc/free directly is slow, so libdw uses
a suballocator to manage memory

* Everything is freed upon dwarf end: only have
to deal with allocation

- Memory blocks are held in a singly-linked
stack, top block is used for allocation if enough
remains, otherwise a new block is pushed

* We enhanced the original!



Thread-safe Memory Management

 Simple solution: use a separate allocation stack
for every thread, free all on dwarf _end

* TLS wouldn’t allow dwarf _end to free, so have
to use a more manual structure

 Use a shared atomic counter to allocate IDs to
every nhew encountered thread (static TLS)

* If memory stacks array is not large enough,
acquire a lock and resize (mediated via rwlock)

 Every thread uses the stack entry at its ID, not
a performance bottleneck



"))
L
-
)]
)
e
)
9
c
©
=
-
o
Y
-
()
o

U<<>m_u _umﬁmm_. _:_:m__Nm,:o:

ELF Setup and Parsing

Input binary has 280KiB symbol table + 73.0MiB DWARF

Parallel speedup: 10.43x (1.10s, 11.51s in serial)
Graphical trace output (white is idle, color is work):

Serial slowdown: ~1.00x (11.51s, 11.48s before)

Timed Dyninst DWARF parsing on 32 threads

ﬂ



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

