
Making Elfutils’ libdw Thread-Safe

Srđan Milaković, Jonathon Anderson
Department of Computer Science
Rice University

2

Changes for Thread-Safety

Main Modifications
● Made Dwarf_Abbrev hash table thread-safe by
adding atomics to mediate concurrent accesses

● Added Pthread-based thread-safety to libdw
memory management

Minor modifications
● Made __libelf_version* thread-local, to work
correctly when threaded

3

Dwarf_Abbrev Background

● Dwarf stores most of its information in tree-
based structures

● Libdw caches .dwarf_abbrev section subtrees
as Dwarf_Abbrev structures

● Each Dwarf_Abbrev is referenced by a unique
abbreviation code, used as the key for the
Dwarf_Abbrev hash table (shown here)

● Lookups are frequent when scanning Dwarf
information; mutual exclusion would be slow

● We enhanced the original to work in parallel!

https://sourceware.org/git/?p=elfutils.git;a=blob;f=libdw/libdwP.h;hb=HEAD#l246

4

Dwarf_Abbrev Concurrent Hash Table

● Based on original implementation, but with
enhancements for concurrency
● Supports only insert and find, iteration is not
needed for Dwarf_Abbrev
● Only one entry per key, keys are unique
● Only whole-table operation is resizing, other
operations use per-entry atomics to mediate
● Threads waiting for a resize to complete can
“help” by initializing and copying entries,
mediated by atomic counters

5

Libdw Memory Management

● Libdw allocates small structures in internal
caches

● Using malloc/free directly is slow, so libdw uses
a suballocator to manage memory

● Everything is freed upon dwarf_end: only have
to deal with allocation

● Memory blocks are held in a singly-linked
stack, top block is used for allocation if enough
remains, otherwise a new block is pushed

● We enhanced the original!

6

Thread-safe Memory Management

● Simple solution: use a separate allocation stack
for every thread, free all on dwarf_end

● TLS wouldn’t allow dwarf_end to free, so have
to use a more manual structure

● Use a shared atomic counter to allocate IDs to
every new encountered thread (static TLS)

● If memory stacks array is not large enough,
acquire a lock and resize (mediated via rwlock)

● Every thread uses the stack entry at its ID, not
a performance bottleneck

7

Performance Results

Timed Dyninst DWARF parsing on 32 threads
Input binary has 280KiB symbol table + 73.0MiB DWARF
Parallel speedup: 10.43x (1.10s, 11.51s in serial)
Serial slowdown: ~1.00x (11.51s, 11.48s before)
Graphical trace output (white is idle, color is work):

E
LF S

e
tu

p
 a

n
d
 Pa

rs in
g

D
W

A
R

F Pa
rse

r In
itia

liza
tio

n

DWARF Parsing

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

