
Confidential + Proprietary

Stephane Eranian
Scalable Tools Workshop 2019
Lake Tahoe, CA

Linux perf_events updates

Confidential + Proprietary

Agenda

● Quick updates on perf_events
● Intel IceLake support

Confidential + Proprietary

SKX90 Erratum

● Intel Skylake (all models) with RTM enabled may lose access generic counter 3
○ Content of EVTSEL and counter for is unreliable
○ Counter 3 may not be available regardless of Hyperthreading mode

● Two options:
○ PMU priority: all RTM transactions abort, PMC3 available for monitoring
○ RTM priority: RTM transactions operate normally, PMC3 unavailable for monitoring
○ Controlled by new MSR TSX_FORCE_ABORT

● Linux support (v5.2): TFA
○ New sysctl /sys/devices/cpu/allow_tsx_force_abort
○ PMU priority: echo 1 > /sys/devices/cpu/allow_tsx_force_abort (boot default)
○ RTM priority: echo 0 > /sys/devices/cpu/allow_tsx_force_abort
○ Guarantee all events are out of counter 3 on return from echo

Intel Xeon Processor Scalable Family specification update June 2019

https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-scalable-spec-update.pdf

Confidential + Proprietary

SK90 Erratum effects
1. with HT enabled and RTM priority, only 3 generic counters
$ echo 1 >/sys/devices/cpu/allow_tsx_force_abort

$ perf stat -a -C 0 --no-merge -I 1000 -e branches,branches,branches,branches sleep 4
time counts unit events
 1.000543512 3,181,592,253 branches
 1.000543512 3,182,862,453 branches
 1.000543512 3,182,864,125 branches
 1.000543512 3,182,865,320 branches

$ echo 0 >/sys/devices/cpu/allow_tsx_force_abort

$ perf stat -a -C 0 --no-merge -I 1000 -e branches,branches,branches,branches sleep 4
time counts unit events
 1.000549218 3,173,776,230 branches (75.00%)
 1.000549218 3,174,894,652 branches (75.01%)
 1.000549218 3,173,908,733 branches (75.02%)
 1.000549218 3,174,442,578 branches (74.96%)
Group of 4 generic counter events will fail:
$ perf stat -a -C 0 --no-merge -I 1000 -e ‘{branches,branches,branches,branches}’

¾ counters
available

Confidential + Proprietary

Intel CascadeLake : Persistent Memory Module support

● core/uncore PMUs identical to SkylakeX

● PMU support for Persistent Memory Module (PMM) AppDirect or Memory Mode
○ Core PMU: MEM_LOAD_RETIRED.LOCAL_PMM, MEM_LOAD_RETIRED.REMOTE_PMM
○ Core PMU: OFFCORE_RESPONSE
○ Lack of writeback coverage

○ Uncore PMU IMC: UNC_M_PMM_RPQ_OCCUPANCY.ALL, UNC_M_PMM_RPQ_INSERTS,
UNC_M_PMM_CMD1.*, UNC_M_PMM_WPQ_OCCUPANCY.ALL, UNC_M_PMM_WPQ_INSERTS

○ Uncore PMU M2M: UNC_M2M_IMC_READS.TO_PMM, UNC_M2M_IMC_WRITES.TO_PMM
○ Possible to measure PMM read/write bandwidth and access latencies for reads/writes

Confidential + Proprietary

Intel Icelake support

● Architectural Perfmon v5:
○ Anythread deprecated
○ Enumeration of fixed counters

● PERF_METRICS
● PEBS v4

Confidential + Proprietary

Intel Icelake PMU: Anythread bit recap

● Per-counter filter (incl. fixed counters)
● Increment counter when event occurs in either thread

$ perf stat -e cpu/event=0x3c,any/,cpu/event=0x3c/ -I 1000 -a -C 10,66 (CPU10, CPU66 siblings)
time CPU counts unit events
 1.000097760 CPU10 83,156,388 cpu/event=0x3c,any/u
 1.000097760 CPU66 83,156,367 cpu/event=0x3c,any/u
 1.000097760 CPU10 43,494,158 cycles:u
 1.000097760 CPU66 39,665,495 cycles:u

● Removed over concerns of security and complexity
○ Can be used to snoop on sibling which may be running program from distinct user

Confidential + Proprietary

Intel Icelake PMU: Anythread bit alternative
● New CPU_CLK_UNHALTED.DISTRIBUTED core event

○ Increment by 1 in each cycle where only the current thread executes uops
○ Alternative only for cycles

● Example: ping-pong between 2 threads sharing same core
$ perf stat -e cpu/event=0xec,umask=0x2,name=cycles_distributed/,cycles pong

CYCLE 1 2 3 4 Total

THREAD0
executes ✓ ✓ 2

THREAD1
executes ✓ ✓ 2

THREAD0
cycles:any

1 1 1 1 4

THREAD1
cycles:any

1 1 1 1 4

CYCLE 1 2 3 4 Total

THREAD0
Executes ✓ ✓ 2

THREAD1
Executes ✓ ✓ 2

THREAD0
cycles_distributed

1 1 2

THREAD1
cycles_distributed

1 1 2

4/2 = 2

Confidential + Proprietary

Intel IceLake core PMU: more counters!
Skylake Icelake

Generic counters per CPU
HT on

4 8

Generic counters per CPU
HT off

8 8

Fixed counters 3 4

Fixed metrics counters 0 1

● Largest generic counter increase since Core 2
● More event constraints: many events can only be counted on lower 4 counters
● New kind of fixed counters: precomputed metrics instead of raw event counts
● More counters = less multiplexing = less overhead
● More counters = more state = more expensive ctxsw, but RDPMC latency is improved 4x (15 cycles)

Confidential + Proprietary

Intel Icelake PMU: PERF_METRICS topdown counter

● New fixed counter: PERF_METRICS (fixed ctr4)
● Topdown level 1 (unit: % of issue slots):

○ frontend bound, backend bound, bad speculation, retiring

● Fixed counter 4: PERF_METRICS
○ 4x 8-bit fields interpreted as fraction of 255
○ Example: frontend bound (bits[16:23])=120 => 120/255 = 47%
○ Computes 4 topdown level 1 metrics since last reset

●

Confidential + Proprietary

Intel IceLake PMU: PERF_METRICS

● Pros of PERF_METRICS:
○ 1 counter read = 4 pre-computed metrics vs. Skylake needed 5 events = 5 counter reads
○ Computes metrics per-thread : huge improvement vs. Skylake which is per-core only
○ Topdown can be measured with up to 8 + 3 other events (HT on)

● Cons of PERF_METRICS:
○ Accuracy: 1 / 255 = ±0.4%
○ Needs reset on read to understand point of reference
○ Must be reset regularly to maintain precision
○ No sampling support
○ Linux support is not trivial due to single counter multiple metrics, not incrementing metrics

Confidential + Proprietary

Intel IceLake PMU: TOPDOWN.SLOTS event

● New fixed counter: TOPDOWN.SLOTS (fixed ctr3)
○ Architectural event enumerated by CPUID 0xa leaf function
○ Supported on generic counters as event 0x01a4

● Counts number of available issue slots per logical CPU
○ Counts unhalted_cores_cycles * machine_width
○ Distributes slots between unhalted logical CPU (HT threads)

Confidential + Proprietary

Intel Icelake PMU: PERF_METRICS Linux support
● Intel (Andi Kleen, Kan Liang) LKML patches from 07/24/2019 under review

● Exports new pseudo-events (/sys/devices/cpu/events)
○ topdown-retiring, topdown-fe-bound, topdown-be-bound, topdown-bad-spec
○ Event code 0x00, umask=0x10, 0x11, 0x12, 0x13
○ RDPMC supported though tricky when computing deltas

● Exported as individual pseudo events but must be in same event group
○ Cause single RDPMC in kernel and automatic reset on read

● Perf stat support
$ perf stat -I 1000 --topdown -a
time counts unit events
 1.000373951 8,460,978,609 topdown-retiring # 22.9% retiring
 1.000373951 3,445,383,303 topdown-bad-spec # 9.3% bad speculation
 1.000373951 15,886,483,355 topdown-fe-bound # 43.0% frontend bound
 1.000373951 9,163,488,720 topdown-be-bound # 24.8% backend bound

Multiplying topdown.slots to scale counts
Actual Topdown breakdown

http://lkml.org/2019/7/24/792

Confidential + Proprietary

Intel Icelake PMU: PEBS recap

● Processor (used to be Precise!) Event-Based Sampling
○ Hardware buffer in virtual memory to save samples for limited set of at-retirement events
○ PMU interrupt only when buffer threshold reached
○ Record machine state at each sample
○ Provide precise IP pointing to instruction causing event, i.e., skidless

● Pros of PEBS
○ Precise IP
○ Lower sampling overhead: 1 PMU Intr for N samples (Linux: 341 samples/PMU intr)
○ Sampling data addresses for load/store events

● Cons of PEBS
○ Constraint on sampling mode: cannot use Linux frequency mode or certain PERF_SAMPLE_*
○ Not all events supported
○ Does not virtualize
○ PEBS record fixed size (24 x 8 = 192 bytes). Too big for most measurements, wasted space+cycles

Confidential + Proprietary

Intel Icelake PMU: Extended PEBS support
● Adds Extended PEBS

○ All counters support PEBS, including Fixed counters 0-3 (Skylake only generic counters 0-3)
○ All events can generate PEBS records
○ Only events supporting precise sampling will generate precise IP, others will include variable skid

● Pros of Extended PEBS
○ Amortize cost of sampling with PEBS buffer for ALL events
○ For non-precise event, skid on IP likely smaller (better) than without PEBS
○ Sample on more PEBS events simultaneously

● Cons of Extended PEBS
○ Does not make all events precise

● Linux support in v5.2
○ Nothing specific to do in tools, can just enable with precise_ip > 0 on any events

$ perf stat -e cpu/event=0x08,umask=0x2,name=dtlb_load_misses_walk_completed_4k/pp

Confidential + Proprietary

Intel Icelake PMU: Adaptive PEBS support
● Adds Adaptive PEBS

○ PEBS record are configurable by groups of fields
○ PEBS can record full LBR
○ PEBS can record XMM registers

● PEBS groups
Name Required Regs Size

(bytes)
Minimal Size
(bytes)

Cumulative Size
(bytes)

Basic Yes eventing_IP, TSC, OVFL, REC FMT 4 * 8 = 32 32 32

Memory No Data addr, ldlat, latency, tsx_info 4 * 8 = 32 32 + 32 = 64 64

GPR No EFLAGS, RIP, EAX, EBX, ECX, EDX, RDI, RSI, R8-R15 18 * 8 = 144 32 + 144 = 176 240

XMM No XMM0-XMM15 16 * 8 = 128 32 + 128 = 160 400

LBR No 32x LBR_TO/LBR_FROM/LBR_INFO 32 * 24 = 768 32 + 768 = 800 1200

6x less than Skylake
for most measurements

Confidential + Proprietary

Intel Icelake PMU: Adaptive PEBS Linux support
● Supported in Linux v5.2
● Kernel automatically selects field groups

○ Based on attr.sample_type and attr.regs_smpl_usr/intr

Perf command line PEBS field groups PEBS record size (bytes)

perf record -e cpu/event=0xd0,umask=0x81/pp basic 32

perf record -d -e cpu/event=0xd0,umask=0x81/pp Basic + memory 64

perf record -intr-regs=AX -e cpu/event=0xd0,umask=0x81/pp Basic + GPR 176

perf record -b -e cpu/event=0xd0,umask=0x81/pp Basic + LBR 800

perf record -intr-regs=XMM0-XMM7 -e cpu/event=0xd0,umask=0x81/pp Basic + XMM 128

perf record -b -d --intr-regs=DI,SI -e cpu/event=0xd0,umask=0x81/pp Basic + GPR +
Memory + LBR

976

Confidential + Proprietary

Google perf_events current challenges

● Scalability of the interface and implementation is the biggest challenge
○ Worried about single machine scalability

● Machines are getting bigger with 200+ CPUs
● perf_events model: individual event abstraction

○ 1 file descriptor per event, 1 event instance per CPU (system-wide mode)
○ Cgroup mode: 1 event instance per cgroup per CPU

● Examples on 256 CPU machine and 200 cgroups:
 $ perf stat -a -e a,b,c,d,e,f : 6 * 256 = 1536 fds

 $ perf stat -a a,b,c,d,e,f -G grp0,grp2,grp3, …,grp199 : 6 * 256 * 200 = 307,200 fds, 51,200 events/CPU

● Cost of multiplexing
● Google is working on improving scalability: patches posted on LKML

Confidential + Proprietary

Conclusion

● Intel Icelake PMU packs the most PMU improvements
● PEBS improvements allows lowering sampling cost by a lot
● PERF_METRICS introduce a new counter concept here to stay

Confidential + Proprietary

References

● Intel SDM Vol 3b May 2019 edition

