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Classical Performance Analysis

• Identify hotspots — high resource utilization 
– time / CPU cycles 
– cache misses on different levels 
– floating point operations, SIMD 
– derived metrics such as instruction per cycle (IPC) 

• Improve code in hot spots 
• Hotspot analysis is indispensable, but 

– cannot tell if resources were “well spent” 
– hotspots may be symptoms of performance problems 
– need significant manual efforts to investigate root causes
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Pinpoint resource wastage instead of usage



x = 0; 
x = 20;

Software Inefficiency — Redundant Operations
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Dead write

Silent write

Silent load

x = 20;  
y=func(x); 
x = 20;

x = A[i]; 
y = A[i]; x

Two	contexts	involved:	
one	is	dead/silent	

because	of	the	killing	one



Software Inefficiency — Redundant Operations
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Need fine-grained binary analysis + call path analysis

killingdead

main()

A() E()

B()

C()

F()D()

add



HMMER: An Example for Resource Wastage
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for	(i	=	1;	i	<=	L;	i++)	{	
				for	(k	=	1;	k	<=	M;	k++)	{	
	 				R1=	mpp[k-1]	+	tpmm[k-1];										
									mc[k]	=	R1;	
									if	((sc	=	ip[k-1]	+	tpim[k-1])	>	R1)		
													mc[k]	=	sc;

for	(i	=	1;	i	<=	L;	i++)	{	
		for	(k	=	1;	k	<=	M;	k++)	{	
							mc[k]	=	mpp[k-1]	+	tpmm[k-1];	
							if	((sc	=	ip[k-1]	+	tpim[k-1])	>	mc[k])		
													mc[k]	=	sc;

Unoptimized -O3 optimized

									else	
													mc[k]	=	R1;

Never	Alias.	
Declare	as	“restrict”	pointers.		

Can	vectorize.

> 16% running time improvement
> 40% with vectorization



Straightforward Measurement for Inefficiencies

• Fine-grained analysis 
– Instrument every memory load and store 
– RedSpy (ASPLOS’17), LoadSpy, RVN (PACT’15), DeadSpy (CGO’12) 

• Advantages 
– do not miss anything  
– serve as a proof-of-concept and upper-bound of other analyses 

• Disadvantages 
– high time and space overhead
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heavyweight profiling lightweight profiling



A Key Observation
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Detecting a variety of inefficiencies requires 
monitoring consecutive accesses to the same memory location   

timeline

memory

Silent write 4242

timeline

memory

Dead write 4224

first write: 42
second write: 42

first access: write
second access: write



Witch: Lightweight Inefficiency Analysis

• Methodology: sample pair of consecutive accesses to the same 
memory address 
– hardware performance monitoring units (PMU) 

• event-based sampling → profiling memory addresses 
• first access in the pair 

– hardware debug registers 
• watch for the next access of sampled memory address 
• second access in the pair
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time line
PMU sample

addr

write

debug  
register

trap

write? then dead write 
read? then not dead write

watch



Witch Advantages

• No source code or binary instrumentation / recompilation 

• Work for fully optimized binary, independent from programming 
languages and models 

• Capture statistically significant inefficiencies 

• Low runtime and memory overhead
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   for ( int i = 1; i <= 100K; i++){
        arrayA[i] = 0;
    }
    for ( int k = 1; k <= 100K; k++){
        arrayB[k] = 0;
    }
    for ( int j = 1; j <= 100K; j++){
        arrayA[j] = 0;
    }

Challenge 1

• Limited number of debug registers 
– 4 on x86 
– 1 on PowerPC
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Assume: PMU samples one in 10k memory stores

20	sampled	addresses	to	monitor	but	have	only	4	debug	registers!

To detect dead store 
between loop 1 and loop 3

watchpoints set in loop 1 
should remain till loop 3

loop 1

loop 2

loop 3



Temporally Unbiased Sampling

• Monitoring addresses with equal probability 
– have a free debug register → monitor the next sample 
– no free debug register → probabilistically replace the address from 

monitoring
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arrayA[10k]

1/2

PMU samples 10k memory stores

   for ( int i = 1; i <= 100K; i++){
        arrayA[i] = 0;
    }

    for ( int k = 1; k <= 100K; k++){
        arrayB[k] = 0;
    }

    for ( int j = 1; j <= 100K; j++){
        arrayA[j] = 0;
    }

arrayA[20k]

arrayA[30k] arrayA[40k]

arrayA[50k]



Temporally Unbiased Sampling
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arrayA[10k]

1/3

PMU samples 10k memory stores

   for ( int i = 1; i <= 100K; i++){
        arrayA[i] = 0;
    }

    for ( int k = 1; k <= 100K; k++){
        arrayB[k] = 0;
    }

    for ( int j = 1; j <= 100K; j++){
        arrayA[j] = 0;
    }

arrayA[50k]

arrayA[30k] arrayA[40k]

arrayA[60k]

• Monitoring addresses with equal probability 
– have a free debug register → monitor the next sample 
– no free debug register → probabilistically replace the address from 

monitoring



Temporally Unbiased Sampling
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arrayA[10k]

1/7

PMU samples 10k memory stores

   for ( int i = 1; i <= 100K; i++){
        arrayA[i] = 0;
    }

    for ( int k = 1; k <= 100K; k++){
        arrayB[k] = 0;
    }

    for ( int j = 1; j <= 100K; j++){
        arrayA[j] = 0;
    }

arrayA[?]

arrayA[?] arrayA[?]

arrayB[10k]

• Monitoring addresses with equal probability 
– have a free debug register → monitor the next sample 
– no free debug register → probabilistically replace the address from 

monitoring



Temporally Unbiased Sampling

!14

arrayA[10k]

PMU samples 10k memory stores

   for ( int i = 1; i <= 100K; i++){
        arrayA[i] = 0;
    }

    for ( int k = 1; k <= 100K; k++){
        arrayB[k] = 0;
    }

    for ( int j = 1; j <= 100K; j++){
        arrayA[j] = 0;
    }

arrayA[?]

arrayB[?] arrayA[?]

• Monitoring addresses with equal probability 
– have a free debug register → monitor the next sample 
– no free debug register → probabilistically replace the address from 

monitoring

arrayA[10k]



Challenge 2

• Biased results
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100k 
dead stores

100k 
dead stores

ideal

10k 
dead stores

100k 
dead stores

biased

Solution: proportional attribution — code in the same context 
has similar behaviors

10 samples but 1 
monitored 10k*10 = 100k

   for ( int i = 1; i <= 100K; i++){
        arrayA[i] = 0;
    }
    for ( int k = 1; k <= 100K; k++){
        x = func();
        x = func();
    }
    for ( int j = 1; j <= 100K; j++){
        arrayA[j] = 0;
    }



Witchcraft: Tools Built atop Witch
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Witch

DeadCraft SilentCraft LoadCraft
…

Witchcraft

…



Witch Has High Accuracy
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• Witch identifies all significant inefficiencies found by exhaustive 
tools

Applica/on Inefficiencies

gcc DeadStore

bzip2 DeadStore

hmmer DeadStore,	SilentStore

h264ref SilentLoad

backprop SilentStore

lavaMD SilentLoad

NWChem-6.3 DeadStore,	SilentStore



Witch’s Runtime and Memory Overheads
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Sampling  
rates

DeadCraft SilentCraft LoadCraft

slowdown memory 
bloat slowdown memory 

bloat slowdown memory 
bloat

10M 1.01x 1.05x 1.00x 1.04x 1.04x 1.05x
1M 1.03x 1.05x 1.03x 1.04x 1.27x 1.07x

500K 1.03x 1.06x 1.04x 1.05x 1.53x 1.07x
Instr 30.8x 7.16x 26.4x 6.16x 57.1x 8.35x



Case Study
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NWChem is a DoE flagship computational chemistry application with 6 
million lines of code. We run it with 8 MPI processes.



New Inefficiencies Reported by Witch
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App Problem Speedup
povray DeadStore 1.08X

Caffe-1.0 SilentStore 1.06X
Binutils-2.27 SilentLoad 10X

botsspar SilentLoad 1.15X
imagick SilentLoad 1.6X

Kallisto-0.43 SilentLoad 4.1X
lbm SilentLoad 1.25X
SMB SilentLoad 1.47X

vacation SilentLoad 1.31X



Witch Supports Multithreading

• PMU and debug register are per-thread 
• Signal delivery is per-thread 
• Witch tools for multi-threaded cases — false sharing 

– thread A populates memory addresses to a shared location 
– thread B grabs a memory address in the shared location to monitor its 

adjacent addresses
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A lightweight false sharing detector  
PPoPP’18 best paper



Speedups after False-sharing Elimination
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Benchmark 2-socket Haswell 16-socket Haswell

Num threads Num threads

4 8 16 32 4 8 18 36 72 144 288

Synchro-
bench

Fuzzy-KMeans 1.22 1.25 1.13 1.75 1.17 1.22 1.15 1.67 2.15 1.13 1.26

SPIN-lazy-list 2.06 1.96 2.02 2.71 5.29 5.76 5.5 6.48 16.06 4.35 2.81

SPIN-hashtable 1.19 1.35 1.41 1.77 1.33 1.44 1.45 2.47 1.26 2.49 1.99

MUTEX-lazy-list 2.04 1.99 2.11 2.23 4.66 4.8 4.54 7.19 6.47 1.54 2.06

MUTEX-hashtable 1.01 1.03 1.03 1.44 1.12 1.09 1.14 2.29 2.65 2.32 1.87

lockfree-fraser-skiplist 1 1 1.18 1.05 1.05 1.06 1.1 1.43 1.56 1.79 1.65

ESTM-specfriendly-tree 2.14 2.67 2.97 5.52 1.83 2.53 3.86 4.23 9.43 7.08 1.88

ESTM-rbtree 1.01 1.19 1.25 1.03 1.08 1.23 1.32 1.19 1.25 1.73 1.27

Discrete	event	
simulator Libdes 3.97 5.37 8.45 1.39 4.27 6.51 9.25 4.81 10.4 8.58 7.19

Formal	
verifica/on Spin6.4.4 1.23 1.21 1.28 2 1.38 1.35 1.23 2.21 2.31 3.93 NA



On-going Work

• Lightweight reuse distance measurement 
– plot reuse histogram with >90% accuracy for program characterization 
– provide call paths for use and reuse to guide code optimization 

• Lightweight inefficiency detection in Java programs 
– PMU + debug regster + JVMTI 

• Lightweight inefficiency detection in Linux kernel

!23



Conclusions

• Potential to pinpoint software inefficiencies in production codes 
– redundant computation 
– redundant memory accesses 
– useless operations 
– … 

• Potential to deeper program analysis 
– access pattern analysis  
– inter-thread analysis (e.g., contention, false sharing) 

• Witch is a unique framework to pinpoint software inefficiencies 
– lightweight measurement 
– extensible interfaces to other client tools 
– available at https://github.com/WitchTools/ 
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https://github.com/WitchTools/

