SWORD: A Bounded Memory-Overhead Detector
of OpenMP Data Races

in Production Runs

Simone Atzeni, Ganesh Gopalakrishnan, Zvonimir Rakamaric
School of Computing, University of Utah, Salt Lake City, UT 84112

Presented at
IPDPS 2018
See paper for details

Courtesy
Pinterest

Ignacio Laguna, Greg L. Lee, Dong H. Ahn
Lawrence Livermore National Laboratory, Livermore, CA

Github.com / PRUNERS

What is a data race?

What is a data race?

Thread 1 Thread 2

c

What is a data race?

Thread 1 Thread 2

c

R/W

What is a data race?

Thread 1 Thread 2

(

No synchronizations

W ; .
\./
‘\.

Lo
-’ ~,

R/W

One way to eliminate this race

TO T1

c

R/W

One way to eliminate this race

TO T1

¢/

LOCK

LOCK

W R/W

UNLOCK UNLOCK

One way to eliminate this race

TO T1

¢/

LOCK

LOCK

W R/W

UNLOCK UNLOCK

Another way to eliminate this race

(

R/W

Another way to eliminate this race

TO T1

(

Signal using "special’ variables

ACQUIRE
e Java ‘volatile’ annotations

« NOT C ‘volatiles’ ®
R/W

e C++11 ’atomic’ annotations

RELEASE

A third way

A third way

TO T1

(

Put a barrier

Why eliminate races?

Popular answer: “avoid nondeterminism”

T0 T1

C

X=0 t=X

Unclear what “nondeterminism” means..

Execution Order is Still Nondeterministic

T0 T1

¢/

LOCK

X=0

UNLOCK UNLOCK

More relevant: Avoid “pink elephants” ©

More relevant: Avoid 7 ©

(Sutter) : “A value you never wrote but managed to read”

Aka ”out of thin air” value

The birth of a pink elephant...

TO T1 TO T1

Compiler
Optimizations

—

X=0 t = X X=24 t = X
t is O here 24

read here

You may

never have
written “24”

in your program

Details of how a pink elephant is made!

TO T1 The compiler has TO
NO IDEA that
the user meant to
communicate here !!

T1

X=0 t = X X=24 t = X

24

23 read here

Compiler Y
optimizations

create these

pink-elephant

values...

This is why code containing data races

often fail (only) when optimized!

Race-freedom ensures intended communications

TO

(

T1

/X

 You don’t observe

“half baked” values

 Code does not reorder

around sync. points

* No “word tearing”

* Pending writes flushed

(fences inserted)

Exploding a myth!

Winaticotild passibiy
go.wrong?

Races in OpenMP programs are hard to spot

* See tinyurl.com/ompRaces if you wish
* but later ©

» Static analysis tools never shown to work well

* First usable OpenMP dynamic race checker (afaik)

* Archer [Atzeni, IPDPS'16]
e More on that soon

* This talk will present the second usable dynamic race checker
* Sword

This talk: Why and how of another OMP race checker

The Pink Elephant Actually Struck Us!

* HYDRA porting on Sequoia at LLNL

* Large multiphysics MP1/OpenMP application
* Non-deterministic crashes in OpenMP region

* Only when the code was optimized!

* Suspected data race

* Emergency hack:

* Disabled OpenMP in Hypre

Archer to the rescue!

Archer to the rescue!

Archer [IPDPS’16]

 Utah: Simone Atzeni, Ganesh Gopalakrishnan, Zvonimir Rakamaric

« LLNL: Dong H. Ahn, Ignacio Laguna, Martin Schulz, Gregory L. Lee
« RWTH: Joachim Protze, Matthias S. Muller

- In production use at LLNL

Part of the “PRUNERS” tool suite
PRUNERS was a finalist of the 2017 R&D 100 Award Selection

Archer’s “find”

Two threads writing 0
to the same location

without synchronization

Archer’s “find”

Two threads writing 0
to the same location

without synchronization

Did we live “happily ever after?”

No ®

Archer has “memory-outs”; also misses races

Archer has “memory-outs”; also misses races

* Archer increases memory 500%
* It also misses races!

* These were known issues
* Finally surfaced with the "“right large example”

Reason: Archer employs “shadow cells”

AO

iiil
iiil

ss2

ss3

A1

ss2

ss3

A programmable
number of cells
per address

E (4 shown, and is

ss3

~4 shadow cells per application location

Amax A programmab[e

number of cells

per address
’ (4 shown, and is
ss2 typical)

ss3 ss3 ss3

inil.

iy
iy

ss2 ss2

Shadow-cells immediately increase memory demand by a factor of four

Archer misses races due to shadow cell eviction

Archer misses races due to shadow cell eviction

CA0 JAT]

EEEEJ
Css1]
Css2 1
[ss3]

SO O B W =

int a[N];

#pragma omp parallel for
for(int i = 0; i < N; i++) {

}

alil

ali] + al[3];

Archer misses races due to shadow cell eviction

U
A0 J[CAT]

int a[N];

[ss0] #pragma omp parallel for
CssT] _

=21 for(int i = 0; i < N; i++) {
[si] ali] = a[i]l + a[3];

SO O B W =

1T 1

All threads read A[3] Thread 3 writes a[3] All threads read a[3]
Thread 3 writes A[3]

Capacity conflict = evict shadow cell

[a0 J[A1 1]

550 | [_ss0 §
[sst]
[sz]
[ss3]

HHHI

With shadow-cell evicted, races are missed

Archer misses races due to HB-masking

Archer misses races due to HB-masking

These are Thread 0 Thread 1 Thread 0} Thread 1 These races
concurrent; acquire(L) write(a) are missed
there are two . in this
races here! \ read(a) acquire(L) , interleaving!
write(a) re?d(a)
(write(a) write(a)
release(L) release(L.) re(L)
acquire(L) < ’ { p acquire L
read(a) rea.xd(a)
write(a) write(a)
release(L) release(L)
(a) No (b)
happens-before Happens-before
(race detected) (no race

detected)

Solution : Get rid of shadow cells !!

Need New Approach with Online/Offline split

Offline Analysis Race

Reports

Details of the online phase

* Collect traces per core un-coordinated
* Trace collection speeds increased; we use the OMPT tracing method

* Employ data compression to bring FULL traces out
* Only 2.5 MB compression buffer per thread (fits in L3 cache)

Consequences for the offline phase

* We would have lost all the synchronization information
* We only know what each thread is doing

* We must recover the concurrency structure
* And in the context of its happens-before order, detect races!

Offline synchronization recovery and analysis

0-[0,1]

2 -[0,1][1,2]

5 -10,1][1,2][0,2]

6 - [0,1][1,2][1,2]

4 - [0,1][0,2][1,2]

- m_acq() T +m_acq(M1)+
- write(x) T R2: race ony H»write(y) T
- Vr\él_ref(() + +m_rel(M1) +
a9 Barrier(1) Barrier(2)
- read(x
R1:raceony | | write(y)
IBarrier(3)
Opsem 7 - [0,1][2,2] ® FOR-LOOP
(HIPS’ 1 8) R3: raceoan T m__acq() 1
8 - [0,1][2,2][0,2] 9 - [0,1]12,2][1,2] + Vnﬁr_'tri%) 1
m_acqg(M1 IBarrier(5)
read(y)
m_rel(M1)

/ IBarrier(4) IBarrier(6)
10 - [0,1][4,2]

11 - [0,1][3,2]
\O/ IBarrier(7)

12 -[1,1]

Offset-Span Labels: How we record concurrency

(Mellor-Crummey, 1991)

C770,1][0,3)

(0,1][0,3](0,2] (0,1][0,3][1,2] (0,1][1,3]

(0,1][3,3] (0,1][1,3][0,3) [0,1][1,3][1,3)

(0,1](1,3](2,3]C

(0,1][3,3][0,2] (0,1][3,3][1,2] :/1],[-4,3] _—

— R
__— ¢ [0,1][2,3]

— — —
//, \\\

— T —

(0,1][6,3]

— —

(F[('):ll[z.:s] (0,4) C [().1][2,3][2.;]‘ J/
_[0,1][2,3][1,4) (d) [0,1][2,3][3,4] O

CJT0,1](5,3]

Key state in OpSem: Maintain Barrier Intervals

1 -[0,1][0,2]

3 -[0,1]/§.2][0,2]

4 - [0,1][0,2][1,2]

Barrier Interval 1 [m_acq() T
- owrite(x) T
- m_rel) T
400 Barrier(1)
. T read(x
Barrier Interval 3 L write(y)
IBarrier(3)
7 -[0,1][2,2]
8 - [0,1][2,2][0,2] 9 -[0,1]2,2][1,2]
m_acqg(M1
read(y)
m_rel(M1)
IBarrier(4)

10-[0,1][4>

2]

0-1[0,1]

2 -10,1][1,2]

5 - [0,1][1,2][0,2]

= [0,1][1,2][1,2]

rm-acqM1)r Barrier Interval 2
write(y) T
+m_rel(M1) +
Barrier(2)
FOR-LOOP
T m_acq() T
write(x) T+ Barrier Interval 5
T m_rel) T
IBarrier(5)
IBarrier(6)

11 -[0,1][3,2]

\O/ |Barrier(7)

12 -[1,1]

Examples of Races Reported

0-1[0,1]

1 -[0,1][0,2] 2 -10,1][1,2]

5 - [0,1][1,2][0,2]

3 -[0,1][0,2][0,2] 6 - [0,1][1,2][1,2]

4 -[0,1][0,2][1,2]

- m_acq() T +m_acq(M1)
- owrite(x) T R2: race ony Héwrite(y) -
- m_rel) T T m_rel(M1) +
_ Barrier(1) Barrier(2)
Barrier T read(x)
Interval 3 R1:raceony | | write(y)
IBarrier(3)
7-10,1][2,2] o FOR-LOOP
R3: race oan L macqo T
i i
8 - (0,112,202 9- [0,1)2.2][1.2) g
m_acqg(M1 IBarrier(5)
read(y)
e m_rel(M1)
Race within |Barrier(4) IBarrier(6)
same
barrier 10-[0.1]i4.2] 11- 0,132

interval

\O/ |Barrier(7)

12 -[1,1]

Examples of Races Reported

0 - [0,1]

1-10,1110,2] ()

@ [0,1][0,2]0,2]

O 2-[0.1[1,2]

@ [0,1][1,2][0,2]

(4) [0,1][0,2][1,2]) 1101,2][1,2]

m_acq() T m_acq(Mi)r Barrier Interval 2
- owrite(x) T R2: race ony —=write(y) T
- m_rel) T = m rel(M1)
Barrier(1) Races across
Barrier -y T read(x) parallel regions
Interval 3 $raceony| - writefy)
IBarrier(3)
7-10,1][2,2] o FOR-LOOP
R3: race oan L macq) | Barrior It s
write(x) T arrier Interva
8 - [0,1][2,2][0,2] 9-[0,1]12,2][1,2] T m_reI(O) -
m_acqg(M1 arrier(5)
read(y)
m_rel(M1)
\ IBarrier(4) IBarrier(6)
10 - [0,1][4,2] 11 - [0,1][3,2]

\O/ IBarrier(7)

12 -[1,1]

Good news

* Online analysis proved really good
* No memory pressure !!

Bad news

Offline analysis took a day to finish on
"medium sized” examples

Two Key Innovations Saved the Approach

* Self-balancing red-black interval trees

* On-the-fly generation of Integer Linear Programs

Reducing “a day” to “under a minute”

* Decompress, record strided accesses in self-balancing red-black interval trees

* Generate Integer Linear Programs on-the-fly, and check for overlaps
» Handles bursts of accesses efficiently

OMP read/writes are bursty with strides!

OMP read/writes are bursty with strides!

Build Integer Linear Programs for each constant-stride interval
ILP system encodes accessed byte-addresses in each “burst”

0000 O e O e O e

‘Each of this is a multi-word access

[T TT]

Overlap of Access Bursts: ILP Generation!

struct Coordinate { Interval Info
int x; [START, END), SIZE, STRIDE
} inty; T accesses a.x [10,42], 4,8
T .
Coordinate a[5}; 1 accesses a.y [14,46], 4, 8
X l y X y X y X y X y

..
..
...................

....................
.................

PR B AR

.....................

...............................

.......................

.................
.......................................
................................

10 1 3.1 4 1 751 8 21 522 25526 29536 | 33;34 37238 41 542 45546 49
1 adcresses | | | | | |
To: 8:-x+10+sy=a T1: 8-x9+14+5s1=a
AN0D<x<4 AND<x3<4

AN0D<s<4 AND<s <4

Interval Trees to record accesses

335820,335820],
R,4,4208860

335820,335820], 335824,335824],
W,4,4208658 W,4,4208639

335816,335816], 335820,335820], 335820,335820],
W.4.4208677 R.4.4208822 W.4.4208884

335920,335920],
R,4,4208736

[337892,339888],500 W

W.4,4209028

» Recorded info is: [Begin, End], #Accesses, Kind, Stride, AtWhichPCValue
* Allows efficient comparison of access bursts across threads
* These Red-Black trees are highly tuned

« Used within Linux to realize fair scheduling methods

Concluding Remarks: Sword is now practical!

Both Archer and Sword are available

Github.com /[PRUNERS

Conclusions: Time for “Medium” Examples

Archer Misses races
Finds all
* races within
Sword 1 10 11 .
execution™

* . can be brought down to 1 by using an MPI cluster
** . we define the formal semantics of OMP race checking [HIPS’18]

Conclusions: Time for Larger Examples

Archpw Misses races

Finds all
* races within

Sword 1 10 11 the

execution™

More Concluding Remarks

» Sword works well ; finds more races than Archer
* Applied to realistic benchmarks
* Archer test suite
* RaceBench from LLNL
 Offline analysis can be parallelized
* Still "decent” on standard multicore platforms

* [t took many ideas working together to realize Sword

* Formal semantics of OpenMP Concurrency
Online / Offline checking split

Data compression

Self-balancing interval trees

ILP-systems to compress traces

* Employs standard tracing methods based on OMPT

Future Work

* Continue to debug / tune Sword

* Incorporate ideas from upcoming pubs
* GPU race checking

Group Credits

Simone Zvonimir Dong Ignacio Greg

Extras

Data Races: Gist

 High-level code is just “fiction”
* Code optimizations are done on a PER THREAD basis

* Races occur jf you don’t tell 3 compiler what’s shared
while(!f){} =2 r=f; while(Ir){} :thisis OKif “f”’ is purely local

while(!f){} =2 r=f; while(Ir){} :notOKiffisshared and you don’t tell
this to the compiler

* How to inform a compiler

* Put the variables inside a mutex (or other synchronization block)
* Declare them to be a Java volatile or C++11 atomic
 C-volatiles won’t do (they don’t have a definite concurrency semantics)

Data Races: Gist

» High-level code is just “fiction”
* Code optimizations are done on a PER THREAD basis

* Races occur ifvoudonttella compilerwhat's shared

while(!f) {} =2 r=f; while(!r) {} :thisis OKif “f” is purely local

while(!f) {} =2 r=f; while(!r){} :notOKiffisshared and you don’t tell
this to the compiler

Position paper: Nondeterminism is unavoidable, but data races are
pure evil

Hans-J. Boehm

HP Laboratories
Hans.Boehm@hp.com

GPUs races also can lead to “pink-elephants”

Initially : x[i] == y[i] ==

Warp-size = 32

__global__ void kernel(int* x, int* y)
{

int index = threadldx.x;

ylindex] = x[index] + y[index];

if (index !=63 && index !=31)
ylindex+1] =1111;

}

Analogy due to Herb Sutter

The hardware schedules these instructions in
“warps” (SIMD groups).

However, this “warp view” often appears
to be lost

E.g. When compiling with optimizations

Expected Answer: 0, 1111, 1111, ..., 1111, 64, 1111, ...

New Answer: 0, 2,4,6, 8, ...

