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Another way to eliminate this race
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Another way to eliminate this race

TO T1

(

Signal using "special’ variables

ACQUIRE
e Java ‘volatile’ annotations

« NOT C ‘volatiles’ ®
R/W

e C++11 ’atomic’ annotations

RELEASE



A third way




A third way
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Put a barrier




Why eliminate races?



Popular answer: “avoid nondeterminism”
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Unclear what “nondeterminism” means..



Execution Order is Still Nondeterministic
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More relevant: Avoid “pink elephants” ©



More relevant: Avoid 7 ©

(Sutter) : “A value you never wrote but managed to read”

Aka ”out of thin air” value



The birth of a pink elephant...

TO T1 TO T1

Compiler
Optimizations

—

X=0 t = X X=24 t = X
t is O here 24

read here

You may

never have
written “24”

in your program



Details of how a pink elephant is made!

TO T1 The compiler has TO
NO IDEA that
the user meant to
communicate here !!

T1

X=0 t = X X=24 t = X

24

23 read here

Compiler Y
optimizations

create these

pink-elephant

values...




This is why code containing data races

often fail (only) when optimized!



Race-freedom ensures intended communications

TO

(

T1

/X

 You don’t observe

“half baked” values

 Code does not reorder

around sync. points

* No “word tearing”

* Pending writes flushed

(fences inserted)



Exploding a myth!

Winaticotild passibiy
go.wrong?




Races in OpenMP programs are hard to spot

* See tinyurl.com/ompRaces if you wish
* but later ©

» Static analysis tools never shown to work well

* First usable OpenMP dynamic race checker (afaik)

* Archer [Atzeni, IPDPS'16]
e More on that soon

* This talk will present the second usable dynamic race checker
* Sword



This talk: Why and how of another OMP race checker



The Pink Elephant Actually Struck Us!

* HYDRA porting on Sequoia at LLNL

* Large multiphysics MP1/OpenMP application
* Non-deterministic crashes in OpenMP region

* Only when the code was optimized!

* Suspected data race

* Emergency hack:

* Disabled OpenMP in Hypre



Archer to the rescue!



Archer to the rescue!

Archer [IPDPS’16]

 Utah: Simone Atzeni, Ganesh Gopalakrishnan, Zvonimir Rakamaric

« LLNL: Dong H. Ahn, Ignacio Laguna, Martin Schulz, Gregory L. Lee
« RWTH: Joachim Protze, Matthias S. Muller

- In production use at LLNL

Part of the “PRUNERS” tool suite
PRUNERS was a finalist of the 2017 R&D 100 Award Selection



Archer’s “find”

Two threads writing 0
to the same location

without synchronization
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without synchronization




Did we live “happily ever after?”



No ®



Archer has “memory-outs”; also misses races



Archer has “memory-outs”; also misses races

* Archer increases memory 500%
* It also misses races!

* These were known issues
* Finally surfaced with the "“right large example”



Reason: Archer employs “shadow cells”
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~4 shadow cells per application location

Amax A programmab[e

number of cells

per address
’ (4 shown, and is
ss2 typical)

ss3 ss3 ss3
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ss2 ss2

Shadow-cells immediately increase memory demand by a factor of four



Archer misses races due to shadow cell eviction



Archer misses races due to shadow cell eviction

CA0 JAT ]

EEEEJ
Css1 ]
Css2 1
[ss3 ]

SO O B W =

int a[N];

#pragma omp parallel for
for(int i = 0; i < N; i++) {

}

alil

ali] + al[3];



Archer misses races due to shadow cell eviction

U
A0 J[CAT ]

int a[N];

[ss0 ] #pragma omp parallel for
CssT ] _

=21 for(int i = 0; i < N; i++) {
[si] ali] = a[i]l + a[3];

SO O B W =

1T 1

All threads read A[3] Thread 3 writes a[3] All threads read a[3]
Thread 3 writes A[3]




Capacity conflict = evict shadow cell

[ a0 J[ A1 1]

550 | [_ss0 §
[sst ]
[ sz ]
[ss3 ]

HHHI

With shadow-cell evicted, races are missed



Archer misses races due to HB-masking



Archer misses races due to HB-masking

These are Thread 0 Thread 1 Thread 0} Thread 1 These races
concurrent; acquire(L) write(a) are missed
there are two . in this
races here! \ read(a) acquire(L) , interleaving!
write(a) re?d(a)
( write(a) write(a)
release(L) release(L.) re(L)
acquire(L) < ’ { p acquire L
read(a) rea.xd(a)
write(a) write(a)
release(L) release(L)
(a) No (b)
happens-before Happens-before
(race detected) (no race

detected)



Solution : Get rid of shadow cells !!



Need New Approach with Online/Offline split

Offline Analysis Race

Reports




Details of the online phase

* Collect traces per core un-coordinated
* Trace collection speeds increased; we use the OMPT tracing method

* Employ data compression to bring FULL traces out
* Only 2.5 MB compression buffer per thread (fits in L3 cache)



Consequences for the offline phase

* We would have lost all the synchronization information
* We only know what each thread is doing

* We must recover the concurrency structure
* And in the context of its happens-before order, detect races!



Offline synchronization recovery and analysis
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Offset-Span Labels: How we record concurrency

(Mellor-Crummey, 1991)
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Key state in OpSem: Maintain Barrier Intervals
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Examples of Races Reported
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Examples of Races Reported
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Good news

* Online analysis proved really good
* No memory pressure !!



Bad news

Offline analysis took a day to finish on
"medium sized” examples



Two Key Innovations Saved the Approach

* Self-balancing red-black interval trees

* On-the-fly generation of Integer Linear Programs



Reducing “a day” to “under a minute”

* Decompress, record strided accesses in self-balancing red-black interval trees

* Generate Integer Linear Programs on-the-fly, and check for overlaps
» Handles bursts of accesses efficiently



OMP read/writes are bursty with strides!



OMP read/writes are bursty with strides!

Build Integer Linear Programs for each constant-stride interval
ILP system encodes accessed byte-addresses in each “burst”

0000 O e O e O e

‘Each of this is a multi-word access

[T TT]



Overlap of Access Bursts: ILP Generation!

struct Coordinate { Interval Info
int x; [START, END), SIZE, STRIDE
} inty; T accesses a.x [10,42], 4,8
T .
Coordinate a[5}; 1 accesses a.y [14,46], 4, 8
X l y X y X y X y X y

..................................................................
....................................................................
...................

....................
.................
----------------
------------------------------------
----------------
PR B AR
----------------
.....................
----------------

-----------------

...............................

-----------------
.......................

.................
.......................................
................................

10 1 3.1 4 1 751 8 21 522 25526 29536 | 33;34 37238 41 542 45546 49
1 adcresses | | | | | |
To: 8:-x+10+sy=a T1: 8-x9+14+5s1=a
AN0D<x<4 AND<x3<4

AN0D<s<4 AND<s <4



Interval Trees to record accesses

335820,335820],
R,4,4208860

335820,335820], 335824,335824],
W,4,4208658 W,4,4208639

335816,335816], 335820,335820], 335820,335820],
W.4.4208677 R.4.4208822 W.4.4208884

335920,335920],
R,4,4208736

[337892,339888],500 W

W.4,4209028

» Recorded info is: [Begin, End], #Accesses, Kind, Stride, AtWhichPCValue
* Allows efficient comparison of access bursts across threads
* These Red-Black trees are highly tuned

« Used within Linux to realize fair scheduling methods



Concluding Remarks: Sword is now practical!

Both Archer and Sword are available

Github.com /[ PRUNERS



Conclusions: Time for “Medium” Examples

Archer Misses races
Finds all
* races within
Sword 1 10 11 .
execution™

* . can be brought down to 1 by using an MPI cluster
** . we define the formal semantics of OMP race checking [HIPS’18]



Conclusions: Time for Larger Examples

Archpw Misses races

Finds all
* races within

Sword 1 10 11 the

execution™




More Concluding Remarks

» Sword works well ; finds more races than Archer
* Applied to realistic benchmarks
* Archer test suite
* RaceBench from LLNL
 Offline analysis can be parallelized
* Still "decent” on standard multicore platforms

* [t took many ideas working together to realize Sword

* Formal semantics of OpenMP Concurrency
Online / Offline checking split

Data compression

Self-balancing interval trees

ILP-systems to compress traces

* Employs standard tracing methods based on OMPT



Future Work

* Continue to debug / tune Sword

* Incorporate ideas from upcoming pubs
* GPU race checking



Group Credits

Simone Zvonimir Dong Ignacio Greg



Extras



Data Races: Gist

 High-level code is just “fiction”
* Code optimizations are done on a PER THREAD basis

* Races occur jf you don’t tell 3 compiler what’s shared
while(!f){} =2 r=f; while(Ir){} :thisis OKif “f”’ is purely local

while(!f){} =2 r=f; while(Ir){} :notOKiffisshared and you don’t tell
this to the compiler

* How to inform a compiler

* Put the variables inside a mutex (or other synchronization block)
* Declare them to be a Java volatile or C++11 atomic
 C-volatiles won’t do (they don’t have a definite concurrency semantics)



Data Races: Gist

» High-level code is just “fiction”
* Code optimizations are done on a PER THREAD basis

* Races occur ifvoudonttella compilerwhat's shared

while(!f) {} =2 r=f; while(!r) {} :thisis OKif “f” is purely local

while(!f) {} =2 r=f; while(!r){} :notOKiffisshared and you don’t tell
this to the compiler

Position paper: Nondeterminism is unavoidable, but data races are
pure evil

Hans-J. Boehm

HP Laboratories
Hans.Boehm@hp.com



GPUs races also can lead to “pink-elephants”

Initially : x[i] == y[i] ==

Warp-size = 32

__global__ void kernel(int* x, int* y)
{

int index = threadldx.x;

ylindex] = x[index] + y[index];

if (index !=63 && index !=31)
ylindex+1] =1111;

}

Analogy due to Herb Sutter

The hardware schedules these instructions in
“warps” (SIMD groups).

However, this “warp view” often appears
to be lost

E.g. When compiling with optimizations

Expected Answer: 0, 1111, 1111, ..., 1111, 64, 1111, ...

New Answer: 0, 2,4,6, 8, ...



