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Latent scalability bugs

System size Wall time
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Motivation
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Performance model = formula that expresses relevant performance 
metrics as a function of one or more execution parameters

Identify 
kernels

• Incomplete 
coverage

Create 
models

• Laborious, 
difficult

Manual creation challenging
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Automatic empirical performance modeling

f (p) = ck ⋅ p
ik ⋅ log2

jk (p)
k=1

n

∑

Performance model normal form (PMNF)

Generation of candidate models 
and selection of best fit
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4.03 p

582.19

Small-scale measurements
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Extra-P 3.0

• GUI improvements, better stability, additional features

• Tutorials available through VI-HPS and upon request
http://www.scalasca.org/software/extra-p/download.html
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Recent developments

1. Performance models with multiple parameters

2. Automatic configuration of the search space

3. Segmented models

4. Iso-efficiency modeling

5. Lightweight requirements engineering for co-design
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Models with more than one parameter

Search space explosion
• Total number of hypotheses to search:

34.786,300,841,019

• Too slow for any practical purpose
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Search space reduction through heuristics

• Hierarchical search – Assumes the best multi-
parameter model is created out of the combination of the 
best single parameter hypothesis for each parameter

• Modified golden section search – Speeds up the single 
parameter search by ordering the hypothesis space and 
then using a variant of binary search to find the model in 
logarithmic time rather than linear time

Calotoiu et al.
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Search space reduction
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• Assuming 300.000 hypotheses searched per second*

• 3-parameter models
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Search space reduction

• Assuming 300.000 hypotheses searched per second*

• 3-parameter models
*This is optimistic
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Search space reduction

• Assuming 300.000 hypotheses searched per second*

• 3-parameter models
*This is optimistic
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Search space reduction

34.786.300.841.019 
hypotheses 
searched

~1 model / 3.5 years 

Exhaustive 
search

590 
hypotheses

searched

~508 models / second

+
27.929 

hypotheses 
searched

~11 models / second

• Assuming 300.000 hypotheses searched per second*

• 3-parameter models
*This is optimistic
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Evaluation with synthetic data
(100,000 models with two parameters)
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Evaluation with application data
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Case study – Kripke

• Neutron transport proxy code

• Three parameters considered
• Process count – p

• Number of directions – d

• Number of groups – g
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Expected behavior

SweepSolver

Main computation kernel

Expectation – Performance depends on 
problem size

MPI_Testany

Main communication
kernel: 3D wave-front
communication pattern

Expectation – Performance depends on 
cubic root of process count

t ~ p3t ~ d ⋅ g
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Expected behavior

SweepSolver

Main computation kernel

Expectation – Performance depends on 
problem size

Actual model:

MPI_Testany

Main communication
kernel: 3D wave-front
communication pattern

Expectation – Performance depends on 
cubic root of process count

Actual model:

t ~ p3t ~ d ⋅ g Kernels must wait on 
each other

t = 5+ d ⋅ g+ 0.005 ⋅ p3 ⋅d ⋅ g t = 7+ p3 + 0.005 ⋅ p3 ⋅d ⋅ g

Smaller compounded effect discovered 
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How to find good PMNF parameters?

Option (1) : Rely on default parameters

→  But what if they don‘t fit the problem?

Option (2): Try those parameters that you expect to fit
→  Requires prior expertise!

Also, what if your expectation is wrong?

Option (3): Try very large sets I, J
→  Requires more resources (especially bad for multiple parameters)!

Option (4): Let Extra-P automatically refine the 
search space based on previous results.
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Simplified PMNF

• Use only constant and “lead order” term

• Want to find values for c₀, c₁, α, and β, such that
model error is minimized

• c₀ and c₁ are determined by regression

• What about α and β?
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Simplified PMNF

We define four slices:

• β = 0, α = ?

• β = 1, α = ?

• β = 2, α = ?

• α = 0, β = ?

Goal: 
Unimodal error 
distribution along 
each slice
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Evaluation

Data from previous case studies
• Sweep3D

• MILC

• UG4

• MPI collective operations

• BLAST

• Kripke

• 5–9 points available

• Last data point (largest p) not used 
for modeling, but to evaluate 
prediction accuracy

Results
• 4453 models

• 49% remain unchanged

• 39% get better

• 12% get worse

• Mean relative prediction down from 
45.7% to 13.0% 

• Improvements in every individual 
case study

Reisert et al.
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Segmented behavior
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Divide data into subsets

Subset 1

Subset 2

Subset 3
Subset 6
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Model each subset and compute nRSS

Normalized RSS High nRSS
values

Heterogeneous
subsets
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Identify change point

0

nRSS ≥ 0.1

01110
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Identify change point

Valid Patterns

….000001110000…
….0000011110000…

Just Noise

….01000110010…
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Identifying the change point

001110

nRSS ≥ 0.1

Change Point
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HOMME

• Dynamic core of Community Atmosphere Model (CAM)

• Run for p ∈ {600; 1,176; …; 54,150}

• 25 out of 664 kernels found segmented

• Change point found between 15,000 and 16,224

• Example: laplace_sphere_wk

Non-segmented model:

Segmented model:
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HOMME

Estimated 
Change 

Point

Ilyas et al.
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System upgrade

Examples

• Double the racks

• Double the sockets

• Double the memory

Given a budget and a set of 
applications, how can we 
best invest in upgrades for a 
given hardware system?
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Lightweight requirements engineering 
for (exascale) co-design

Collect 
portable 

requirement 
metrics

Derive 
requirement 

models 

Extrapolate 
to new 
system

Resource Metric
Memory footprint # Bytes used (resident memory size) 
Computation # Floating-point operations (#FLOP) 
Network communication # Bytes sent / received 
Memory access # Loads / stores; stack distance
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Application demands for different resources 
scale differently 

Calculate relative changes of resource demand by scaling p and n

• n is a function of the memory size

• p is a function of the number of cores / sockets

Lulesh

Models are per process
p – Number of processes 
n – Problem size per process 

TABLE II: Per-process requirements models. p denotes the number
of processes and n = N/p the problem size per process obtained by
dividing the overall problem size N by the number of processes p,
under the assumption that the overall problem size can be divided
equally among all processes. For each metric, we show the terms
with the largest impact on performance for both problem size per
process and number of processes. The coefficient is the sum across
the entire program, rounded to the nearest power of ten. We mark
potential performance bottlenecks with a warning sign.

Metric Model
K

r
ip

k
e

#Bytes used 105 · n
#FLOP 107 · n
#Bytes sent & received 104 · n
#Loads & stores 108 · n+ 105 · n · p B
Stack distance Constant

L
U

L
E

S
H

#Bytes used 105 · n log n
#FLOP 105 · n log n · p0.25 log p B

#Bytes sent & received 103 · n · p0.25 log p B

#Loads & stores 105 · n log n · log p
Stack distance Constant

M
I
L

C

#Bytes used 106 · n
#FLOP 1010 · n+ 107 · n log p
#Bytes sent & received 104 ·Allreduce(p)

104 ·Bcast(p)
109 · n

#Loads & stores 1011+108 ·n log n+105 ·p1.5
Stack distance 105 · n

R
e
le

a
r
n

#Bytes used 106 ·
p
n

#FLOP 103 · n log n · log p+ p
#Bytes sent & received 105 ·Allreduce(p)

10 ·Alltoall(p)
10 · n

#Loads & stores 106 · n log n+ 105 · p log p
Stack distance Constant

ic
o

F
o

a
m

#Bytes used 103 · n+ 102 · p log p B

#FLOP 108 · n1.5 · p0.5 B

#Bytes sent & received n0.5 ·Allreduce(p) B

p0.5 log p B

n · p0.375 B

#Loads & stores 108 · n log n · p0.5 log p B
Stack distance Constant

does not support the processor of JUQUEEN, we measured
stack distance for all applications on Lichtenberg. Already
this showcases one advantage of our approach. Because the
metrics we collect are architecture independent, we can easily
overcome the deficiencies of the measurement infrastructure
on one system by choosing another.

In our experiments, we varied the number of MPI processes
and the problem size per process. Some of the metrics we
analyze can be gathered at different levels of granularity. A
fine granularity is useful to pinpoint performance bottlenecks
in applications. For the current analysis however, we are
interested in the performance of the application as a whole
and we therefore wish to summarize the models obtained. The
memory footprint, the number of floating-point operations, and
the number of loads and stores are gathered by examining the
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Fig. 3: Measurements classified by percentile relative error
over all generated models.

entire application monolithically. Requirements for communi-
cation and memory locality are obtained at the granularity of
function calls and instruction groups, respectively. For each
application, we selected all models with the fastest growing
requirements for each of the two model parameters p and n,
added all coefficients for these models, and rounded them to
the nearest power of ten. We generated models considering
polynomial and logarithmic exponents. The polynomial expo-
nents take values between 0 and 3, including all fractions of
the types i

8 and i
3 . For logarithms, we used the exponents

{0; 0.5; 1; 1.5; 2}.
The resulting requirements models of our five applications

are presented in Table II. To assess the model quality, the
histogram shown in Figure 3 classifies each measurement that
was used to generate a model according to the relative error
of the generated model. The overwhelming majority (88%)
of measurements points are well explained by our models
and have relative errors smaller than 5%, and most of the
remaining ones (8%) still have relative errors smaller than
20%. We therefore claim that the models we generate are more
than adequate to serve as a basis for the co-design process.
Below, we briefly discuss the requirements of each application
individually.

Kripke is a 3D Sn particle transport code and implements an
asynchronous MPI-based parallel sweep algorithm. A major
goal of Kripke is the evaluation of programming models,
data layouts, and sweep algorithms in terms of their perfor-
mance impact. The problem size per process is defined as the
simulated volume per process. As expected from a exascale
proxy app, Kripke should scale reasonably well to any number
of processes and the problem size per process will remain
configurable without incurring significant performance losses.
Only the number of loads and stores shows a multiplicative
effect of problem size and process count and might lead to a
slowdown.

LULESH is also a a widely studied proxy application in
DOE co-design efforts for exascale which calculates simplified
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Response of workload to system upgrades

requirements for computation, communication, and memory
access. Our comparative analysis is numerically summarized
in Table V. We consider an optimistic linear relation between
problem size per process and requirements as a baseline for
scalability. For example, if we double the racks we wish that
the total problem size that can be solved should double, too,
but that the requirements per process remain the same. This
simplifying assumption will not be generally true, but provides
a notion of desirable behavior for our discussion. Apart from
MILC, no other application has shown any change in memory
locality with respect to process count and problem size per
process. We therefore focus on the total number of load and
store instructions as the primary memory-access metric in
these cases.

When analyzing Table V, it becomes obvious that the
most important parameter is the problem size per process,
as it determines all other requirements and how well the

TABLE IV: Workflow for determining the requirements of Relearn
after doubling the number of racks (upgrade A). The upgrade is
relative, therefore we can omit model coefficients.

I: Create requirement models for memory footprint,
communication, computation, and memory access.

Metric Process scaling and problem scaling

#FLOP n log n · log p+ p
#Bytes sent & recv. n
#Loads & stores n log n+ p log p
#Bytes used

p
n

II: Determine the new maximum number of processes and new
memory available per process that the upgraded system supports.

Configuration parameter Old New

Processes count p p0 = 2p
Memory m m0 = m

III: Determine the new memory footprint requirement per process
if all processors are used.

Metric Old New

#Bytes used
p
n

p
n

IV: Determine the new problem size per process such that the
memory footprint equals the memory available to each process
and compute the new overall problem size.

Metric Old New Ratio

Problem size per proc. n = m2 n0 = m2 1
Overall problem size p · n p0 · n0 2

V: Determine the new requirements for computation,
communication, and memory access. We assume p << n.

Metric Old New Ratio

#FLOP n log n log p n log n log 2p ⇡ 1
#Bytes sent & recv. n n 1
#Loads & stores n log n n log n 1

TABLE V: System upgrade comparison. We show how problem
size and the corresponding requirements of an application change in
response to each upgrade. While the ability to solve large overall
problems is desirable, the per-process requirements for computation,
communication and memory access should be as low as possible.
The base-line expectation, which assumes a linear relation between
requirements and problem size per process, is provided in the
rightmost column for each metric.

Ratios
Apps.

K
rip

ke

LU
LE

SH

M
IL

C

R
el

ea
rn

ic
oF

oa
m

B
a
s
e
li

n
e

System upgrade A: Double the racks

Problem size per process 1 1 1 1 0.5 1

Overall problem size 2 2 2 2 1 2

Computation 1 1.2 1 1 0.5 1

Communication 1 1.2 1 1 0.7 1

Memory access 2 1.2 2.8 2 0.7 1

System upgrade B: Double the sockets

Problem size per process 0.5 0.5 0.5 0.3 0.3 0.5

Overall problem size 1 1 1 0.6 0.6 1

Computation 0.5 0.6 0.5 0.3 0.2 0.5

Communication 0.5 0.6 0.5 0.3 0.3 0.5

Memory access 0.5 1 1.4 1 0.5 0.5

System upgrade C: Double the memory

Problem size per process 2 1.4 2 2.8 1.4 2

Overall problem size 2 1.4 2 2.8 1.4 2

Computation 2 1.4 2 2.8 1.7 2

Communication 2 1.4 2 2.8 1.4 2

Memory access 2 1.4 2 2.8 1.4 2

stated goal of trying to perform heroic runs is met. When
considering the computation, communication, and memory-
access requirements per process, these should ideally follow
the same behavior as the problem size per process. None of
the analyzed applications reach this ideal, although Kripke
and MILC come close with only one and two deviations,
respectively, which one can see by tracing their columns in
Table V.

Finally, we summarize how the applications benefit from
the proposed upgrades: Kripke benefits equally from doubling
the memory or doubling the sockets, and slightly less from
doubling the racks. LULESH draws the biggest advantage
from doubling the racks and the least from doubling the
memory. MILC and Relearn profit most from doubling the
memory and least from doubling the sockets. The last appli-
cation studied, icoFoam, would benefit only from doubling the
memory. Consequently, there is no upgrade which is best for
all applications, but overall doubling the memory or the racks
would help most applications the most.

B. System design

The second question we address is: ”How would the perfor-

mance change when an application is ported between different

Best option 
for Lulesh

Worst option 
for Lulesh

Calotoiu et al.
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7th Workshop on Extreme Scale 
Programming Tools (ESPT'18)

• Performance tools

• Debugging and correctness tools

• Program development tool chains (incl. IDEs)

• Performance engineering

• Tool technologies for extreme-scale challenges 
(e.g., scalability, resilience, power)

• Tool support for accelerated architectures

• Tools for networks and I/O

• Tool infrastructures and environments

• Application developer experiences

Author
stipends !


