Scalable, Automated
Characterization of Parallel
Application Communication
Behavior

Philip C. Roth
Computer Science and Mathematics Division
Oak Ridge National Laboratory

12t Scalable Tools Workshop

ORNL is managed by UT-Battelle
for the US Department of Energy




Motivation

 Often given unfamiliar application and
asked to:

— Describe how it works
— Improve performance/scalability

 Helps to have high-level view of how
processes communicate

_fRA PIDS;



Motivation

 Often given unfamiliar application and
asked to:

— Describe how it works
— Improve performance/scalability

 Helps to have high-level view of how
processes communicate

 Event traces and timeline visualizations —
too much detail

_fRAPIDS;



Motivation

 Often given unfamiliar application and
asked to:

— Describe how it works
— Improve performance/scalability

 Helps to have high-level view of how
processes communicate

 Event traces and timeline visualizations —
too much detail

« Communication matrix visualization —»
hard to interpret

_fRAPIDS;




Background: Oxbow

» Characterize application demands independent of performance

- SyStem deSign Instruction Mix, HPCG, 64 processes
— Representativeness of proxy apps

» Characterization on several axes:
— Computation (instruction mix)
— Memory access (reuse distance)
— Communication (topology, volume)

 Online database for
results with web portal
including analytics
support

Result of clustering apps using instruction mix

* Project is dormant

_fRA PIDS;



AChax: Automated Communication Pattern Characterization

« Goal: capture communication pattern
recognition expertise in an automated tool

» Given data describing application
. . . . Crammps = 13354 - Broadcast(root : 0)+
communication behavior, recognize 700 - Reduce(root : 0)+

communication pattern(s) and scale(s) that 19318888 - 3D Nearest Neighbor(
best account for observed data dims : (4,4,6),

periodic : True)

« Express recognized patterns as
parameterized expression

_fRA PIDS;



Inspiration |: Paradyn’s Performance Consultant

- Automated search through a
space to find “point” that best
explains observed performance

- Hypothesize, test, and refine
* Record results in a search tree

_fRA PIDS;



Inspiration Il: Sky Subtraction

« Given an image of the sky, remove the known to make it easier to
recognize the unknown

Recognizing and removing the contribution of a 2D nearest neighbor pattern in a
synthetic communication matrix. This represents one step in a search-based
approach.

_fRA PIDS;



Search Overview

» Associate application’s communication
matrix with root node

At root node, for each pattern in pattern
library
— Attempt to recognize pattern in node’s matrix

— If recognized, subtract scaled pattern from
node’s matrix to get child matrix

— Add child node with new matrix and edge to
search result tree

— Recursively apply search starting at child
node

3D nearest neighbor

_fRA PIDS;

2D nearest neighbor



Pattern Recognition

* Library of scale-independent pattern generators and recognizers

* When attempting to recognize a pattern in a matrix
— Determines number of processes
— Determines dimension sizes for multidimensional patterns
— Determines scale of the pattern
— Determines root process for rooted collectives
— Detects origin corner for wavefront patterns

* Heuiristics for lightweight checks when possible

_fRAPIDS;



Search Result

* Residual: total
communication volume
In @ communication
matrix

* When search finishes,
path between root and
leaf with smallest
residual indicates
patterns that best
explain original
communication matrix

3D nearest neighbor

{'dims’: (8,2,4),
'scale’: 1024,

'periodic': [False, False, False] } | periodic': [True, True]

broadcast
{'scale': 512,
'root': 6}

3D nearest neighbor

C:;‘}:few {dims': (8.2.4),
';’om"‘ﬁ} ’ 'scale': 1024,
33| 'periodic': [False, False, False]}
2518488

3D swee
{'dims": (8,2,4),
'scale': 1024,
corner': (0,0,0)}

2D nearest neighbor
{'dims": (8,8),
'scale’: 8192,

2D nearest neighbor
{'dims': (8,8),
'scale': 7168,
periodic': [True, True] }

‘ 200152 ,

3D sweep
{'dims': (8,2,4),
'scale': 1024,
corner': (1,1,0)}

< 6938568 ’

any-to-many collective
{'scale’: 1024}

2809800

3D nearest neighbor 2D nearest neighbor

broadeast d  Deare fraiv
Cseale': 4006, | (scale’s 16 {'dims's (8,2.4). {'dims': (8,8),
"root': 0} ’ 'mol"‘}} ’ 'scale': 1024, 'scale': 8192,

periodic': [False, False, False]} | periodic': [True, True]}

reduce 3D nearest neighbor 2D nearest neighbor 3D sweep
{'scale’: 16 {dims’: 8,2, 4), {'dims': (8,8), {'dims': (8,2,4),
root: 3} 'scale’: 1024, scale’s 8192, scale’s 1024,

periodic': [False, False, False]}  |'periodic': [True, True]}  |corner': (0,0,0)}

2D nearest neighbor
{'dims": (8,8),
'scale’: 8192,
ic': [True, True]}

3D sweep
{'dims": (8,2,4),
'scale': 1024,
'corner': (0,0,0)}

2D nearest neighbor 2D nearest neighbor 3D sweep
{'dims": (16, 4), {'dims': (8,8), {'dims': (8,2,4),
'scale': 1024, 'scale': 7168, 'scale': 1024,
periodic': [False, False] } periodic': [True, True] } 'corner': (0, 1,0)}

2D nearest neighbor
{'dims': (8,8),
'scale': 6144,
periodic': [True, True] }

fRAPIDS;




Three Problems
* Ambiguity in pattern recognition

» Greedy recognition approach can be too greedy
* Inefficient implementation

_fRA PIDS;



Problem 1: Pattern Recognition Ambiguity

* Representing communication data using traditional communication
matrix leads to ambiguity, especially with collectives

Broadcast or Worst case
multiple point-
to-point?

_fRA PIDS;



Augmented Communication Graphs (ACGs)

* Instead of traditional _
communication matrix,
represent communication
data as a graph

* Vertices for processes
— Separate sender/receiver roles

- Edges denote
communication occurred

— Labeled with operation count
and message volume

* To make it easier to discern
collective operations,
augment the graph with
vertices representing
communicators

_fRA PIDS;



And That Worst Case?

 As presented so far, better but not ideal

- May need to label communicator vertices
with collective operation or operation type

_fRA PIDS;



Problem 2: Too Greedy

* When recognizing a pattern,
AChax recognizes as much
data as possible for that
pattern

« Can cause automated search
to fail to recognize some
pattern combinations

— broadcast: {’scale’: 4096, 'root’: 0}
— broadcast: {’scale’: 512, 'root’: 3}
— reduce: {’scale’: 16, root’: 2}
— many-to-many: {’scale’: 1024}

_fRA PIDS;



Non-Greedy Pattern Recognition

* If pattern recognized, check if removing pattern with maximum scale
will result in invalid ACG

* If so, find smaller scale(s) and refine search at each

* Problem: if pattern recognized at maximum scale S, can be
recognized for every integer scale between 0 and S

— Search space explosion

* Instead, find “interesting” scale values

 Heuristic based on communication count differences on ACG edges
— Current implementation may still refine at large number of scales

_fRAPIDS;



Problem 3: Inefficient Searc

<
* Original AChax implementation

susceptible to doing lots of —

redundant work o3
<D

3D nearest neighbor 2D nearest neighbor 3D sweep
"dims': (8,2, 4), "dims': (8,8), {'dims': (8,2.4),

 E.g., pattern combination from
original AChax paper D

3D nearest neighbor 2D nearest neighbor 3D sweep
care i 6

reduce ) 1dims’
{'scale': 16, 2.4), {'dims': (8.2.4),

— Search results tree has 506 nodes Y| e T i,y ool ) oo R
1 » H @
— 180 leaves (“best” for given search =y i

{'dims'’: (8,8), {'dims': (8,2,4),
scale': 1024, "scale': 8192, ' 1024,

- s s 'scale': 1024,
re I n e I I Ie n "periodic': [False, False, False]} | periodic': [True, True]} |corner’: (0,0,0)}
— Only 3 distinct residual values in leaves [ - oo [oramm ou
{'dims": (8,8), ims': (16,4), {'dims': (8.8), ).

i
"scale': 7168,

ny collective
11024}

ale's 7168,

* Instead, prune search when @ @ @
root—node path is permutation of kL

another root—node path @D @

fRAPIDS;



Implementation

* Original AChax tool
— Python, using NumPy and SciPy for matrix ops and I/O
— MatrixMarket format for communication matrix files

* AChaxG — ACG-based tool
— Still Python
— Graph-tool module for I/O, analysis, and visualization of ACGs
— VERY slow = recently back to MatrixMarket representation of ACG

« Simple ACG viewer
— Interactive, highlights edges to/from selected nodes

» Grabber: MPI communications data capture library

— C++ with Boost and Todd Gamblin’s MPI wrapper generator
RAPIDS



Case Study: Xolotl

* Plasma surface interactions model
— C++, MPI, PETSc

« Ran on OLCF Eos Cray XC30
— 1D problem, 2048 grid points
— 32 processes, 5 time steps
* AChaxG recognized broadcast, reduce, and

1D nearest neighbor patterns — didn’t account
for much

* Interactive visualization exposed point-to-point
collectives (eventually found within PETSc)

_fRAPIDS;



Lots Left to Do

* Handle patterns whose communication volume depends on specific
sender/receiver pair

— Statistical distributions instead of constant scales?

* Handle sub-communicators and tightly-coupled MPMD apps
— Two-stage pattern recognition (identify subcommunicators then original search)?

* Handle apps that re-number ranks

* Explore alternative approaches
— Optical pattern recognition with machine learning
— Matrix optimization problem using traditional solver techniques

* Improve recognition performance (parallelization)
« Scalable graph viewer

RAPIDS



Acknowledgements

 This material is based upon work supported by the U.S. Department
of Energy, Office of Science, Office of Advanced Scientific Computing
Research under contract number DE-AC05-000R22725.

* This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-000R22725.

RAPIDS



Summary

Developing automated communication pattern recognition to support debugging,
optimization, system choice, system design

Recently augmented automated communication pattern recognition approach to use:
— Communication graphs augmented with information about collectives

— Aggressive search space pruning

Exploring alternatives: using statistical distributions, machine learning, optical pattern
recognition, parallelization

Publications

— P.C. Roth, J.S. Meredith, J.S. Vetter, “Automated Characterization of Parallel Application
Communication Patterns,” HPDC 15

— P.C. Roth, “Improved Accuracy for Automated Communication Pattern Characterization Usin
%oonzmr?m(Jtmcatlon (?raphs and Aggressive Search Space Pruning,” ESPT'17. Published as LNCS
0 appear

For more information: rothpc@ornl.gov

RAPIDS



