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Motivation

 Often given unfamiliar application and
asked to:

— Describe how it works
— Improve performance/scalability

 Helps to have high-level view of how
processes communicate
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Motivation

 Often given unfamiliar application and
asked to:

— Describe how it works
— Improve performance/scalability

 Helps to have high-level view of how
processes communicate

 Event traces and timeline visualizations —
too much detail

« Communication matrix visualization —»
hard to interpret
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Background: Oxbow

» Characterize application demands independent of performance

- SyStem deSign Instruction Mix, HPCG, 64 processes
— Representativeness of proxy apps

» Characterization on several axes:
— Computation (instruction mix)
— Memory access (reuse distance)
— Communication (topology, volume)

 Online database for
results with web portal
including analytics
support

Result of clustering apps using instruction mix

* Project is dormant
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AChax: Automated Communication Pattern Characterization

« Goal: capture communication pattern
recognition expertise in an automated tool

» Given data describing application
. . . . Crammps = 13354 - Broadcast(root : 0)+
communication behavior, recognize 700 - Reduce(root : 0)+

communication pattern(s) and scale(s) that 19318888 - 3D Nearest Neighbor(
best account for observed data dims : (4,4,6),

periodic : True)

« Express recognized patterns as
parameterized expression
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Inspiration |: Paradyn’s Performance Consultant

- Automated search through a
space to find “point” that best
explains observed performance

- Hypothesize, test, and refine
* Record results in a search tree
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Inspiration Il: Sky Subtraction

« Given an image of the sky, remove the known to make it easier to
recognize the unknown

Recognizing and removing the contribution of a 2D nearest neighbor pattern in a
synthetic communication matrix. This represents one step in a search-based
approach.
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Search Overview

» Associate application’s communication
matrix with root node

At root node, for each pattern in pattern
library
— Attempt to recognize pattern in node’s matrix

— If recognized, subtract scaled pattern from
node’s matrix to get child matrix

— Add child node with new matrix and edge to
search result tree

— Recursively apply search starting at child
node

3D nearest neighbor
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Pattern Recognition

* Library of scale-independent pattern generators and recognizers

* When attempting to recognize a pattern in a matrix
— Determines number of processes
— Determines dimension sizes for multidimensional patterns
— Determines scale of the pattern
— Determines root process for rooted collectives
— Detects origin corner for wavefront patterns

* Heuiristics for lightweight checks when possible
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Search Result

* Residual: total
communication volume
In @ communication
matrix

* When search finishes,
path between root and
leaf with smallest
residual indicates
patterns that best
explain original
communication matrix

3D nearest neighbor

{'dims’: (8,2,4),
'scale’: 1024,

'periodic': [False, False, False] } | periodic': [True, True]

broadcast
{'scale': 512,
'root': 6}

3D nearest neighbor

C:;‘}:few {dims': (8.2.4),
';’om"‘ﬁ} ’ 'scale': 1024,
33| 'periodic': [False, False, False]}
2518488

3D swee
{'dims": (8,2,4),
'scale': 1024,
corner': (0,0,0)}

2D nearest neighbor
{'dims": (8,8),
'scale’: 8192,

2D nearest neighbor
{'dims': (8,8),
'scale': 7168,
periodic': [True, True] }

‘ 200152 ,

3D sweep
{'dims': (8,2,4),
'scale': 1024,
corner': (1,1,0)}

< 6938568 ’

any-to-many collective
{'scale’: 1024}

2809800

3D nearest neighbor 2D nearest neighbor

broadeast d  Deare fraiv
Cseale': 4006, | (scale’s 16 {'dims's (8,2.4). {'dims': (8,8),
"root': 0} ’ 'mol"‘}} ’ 'scale': 1024, 'scale': 8192,

periodic': [False, False, False]} | periodic': [True, True]}

reduce 3D nearest neighbor 2D nearest neighbor 3D sweep
{'scale’: 16 {dims’: 8,2, 4), {'dims': (8,8), {'dims': (8,2,4),
root: 3} 'scale’: 1024, scale’s 8192, scale’s 1024,

periodic': [False, False, False]}  |'periodic': [True, True]}  |corner': (0,0,0)}

2D nearest neighbor
{'dims": (8,8),
'scale’: 8192,
ic': [True, True]}

3D sweep
{'dims": (8,2,4),
'scale': 1024,
'corner': (0,0,0)}

2D nearest neighbor 2D nearest neighbor 3D sweep
{'dims": (16, 4), {'dims': (8,8), {'dims': (8,2,4),
'scale': 1024, 'scale': 7168, 'scale': 1024,
periodic': [False, False] } periodic': [True, True] } 'corner': (0, 1,0)}

2D nearest neighbor
{'dims': (8,8),
'scale': 6144,
periodic': [True, True] }
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Three Problems
* Ambiguity in pattern recognition

» Greedy recognition approach can be too greedy
* Inefficient implementation
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Problem 1: Pattern Recognition Ambiguity

* Representing communication data using traditional communication
matrix leads to ambiguity, especially with collectives

Broadcast or Worst case
multiple point-
to-point?
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Augmented Communication Graphs (ACGs)

* Instead of traditional _
communication matrix,
represent communication
data as a graph

* Vertices for processes
— Separate sender/receiver roles

- Edges denote
communication occurred

— Labeled with operation count
and message volume

* To make it easier to discern
collective operations,
augment the graph with
vertices representing
communicators
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And That Worst Case?

 As presented so far, better but not ideal

- May need to label communicator vertices
with collective operation or operation type
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Problem 2: Too Greedy

* When recognizing a pattern,
AChax recognizes as much
data as possible for that
pattern

« Can cause automated search
to fail to recognize some
pattern combinations

— broadcast: {’scale’: 4096, 'root’: 0}
— broadcast: {’scale’: 512, 'root’: 3}
— reduce: {’scale’: 16, root’: 2}
— many-to-many: {’scale’: 1024}
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Non-Greedy Pattern Recognition

* If pattern recognized, check if removing pattern with maximum scale
will result in invalid ACG

* If so, find smaller scale(s) and refine search at each

* Problem: if pattern recognized at maximum scale S, can be
recognized for every integer scale between 0 and S

— Search space explosion

* Instead, find “interesting” scale values

 Heuristic based on communication count differences on ACG edges
— Current implementation may still refine at large number of scales
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Problem 3: Inefficient Searc

<
* Original AChax implementation

susceptible to doing lots of —

redundant work o3
<D

3D nearest neighbor 2D nearest neighbor 3D sweep
"dims': (8,2, 4), "dims': (8,8), {'dims': (8,2.4),

 E.g., pattern combination from
original AChax paper D

3D nearest neighbor 2D nearest neighbor 3D sweep
care i 6

reduce ) 1dims’
{'scale': 16, 2.4), {'dims': (8.2.4),

— Search results tree has 506 nodes Y| e T i,y ool ) oo R
1 » H @
— 180 leaves (“best” for given search =y i

{'dims'’: (8,8), {'dims': (8,2,4),
scale': 1024, "scale': 8192, ' 1024,

- s s 'scale': 1024,
re I n e I I Ie n "periodic': [False, False, False]} | periodic': [True, True]} |corner’: (0,0,0)}
— Only 3 distinct residual values in leaves [ - oo [oramm ou
{'dims": (8,8), ims': (16,4), {'dims': (8.8), ).

i
"scale': 7168,

ny collective
11024}

ale's 7168,

* Instead, prune search when @ @ @
root—node path is permutation of kL

another root—node path @D @
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Implementation

* Original AChax tool
— Python, using NumPy and SciPy for matrix ops and I/O
— MatrixMarket format for communication matrix files

* AChaxG — ACG-based tool
— Still Python
— Graph-tool module for I/O, analysis, and visualization of ACGs
— VERY slow = recently back to MatrixMarket representation of ACG

« Simple ACG viewer
— Interactive, highlights edges to/from selected nodes

» Grabber: MPI communications data capture library

— C++ with Boost and Todd Gamblin’s MPI wrapper generator
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Case Study: Xolotl

* Plasma surface interactions model
— C++, MPI, PETSc

« Ran on OLCF Eos Cray XC30
— 1D problem, 2048 grid points
— 32 processes, 5 time steps
* AChaxG recognized broadcast, reduce, and

1D nearest neighbor patterns — didn’t account
for much

* Interactive visualization exposed point-to-point
collectives (eventually found within PETSc)
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Lots Left to Do

* Handle patterns whose communication volume depends on specific
sender/receiver pair

— Statistical distributions instead of constant scales?

* Handle sub-communicators and tightly-coupled MPMD apps
— Two-stage pattern recognition (identify subcommunicators then original search)?

* Handle apps that re-number ranks

* Explore alternative approaches
— Optical pattern recognition with machine learning
— Matrix optimization problem using traditional solver techniques

* Improve recognition performance (parallelization)
« Scalable graph viewer
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Summary

Developing automated communication pattern recognition to support debugging,
optimization, system choice, system design

Recently augmented automated communication pattern recognition approach to use:
— Communication graphs augmented with information about collectives

— Aggressive search space pruning

Exploring alternatives: using statistical distributions, machine learning, optical pattern
recognition, parallelization
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