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Motivation

• Often given unfamiliar application and 
asked to:
– Describe how it works
– Improve performance/scalability

• Helps to have high-level view of how 
processes communicate
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Motivation

• Often given unfamiliar application and 
asked to:
– Describe how it works
– Improve performance/scalability

• Helps to have high-level view of how 
processes communicate

• Event traces and timeline visualizations →
too much detail
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Motivation

• Often given unfamiliar application and 
asked to:
– Describe how it works
– Improve performance/scalability

• Helps to have high-level view of how 
processes communicate

• Event traces and timeline visualizations →
too much detail

• Communication matrix visualization →
hard to interpret
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Background: Oxbow

• Characterize application demands independent of performance 
– System design
– Representativeness of proxy apps

• Characterization on several axes:
– Computation (instruction mix)
– Memory access (reuse distance)
– Communication (topology, volume)

• Online database for
results with web portal
including analytics
support

• Project is dormant 

Instruction Mix, HPCG, 64 processes

Result of clustering apps using instruction mix
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AChax: Automated Communication Pattern Characterization

• Goal: capture communication pattern 
recognition expertise in an automated tool

• Given data describing application 
communication behavior, recognize 
communication pattern(s) and scale(s) that 
best account for observed data

• Express recognized patterns as 
parameterized expression

4. CASE STUDIES

4.1 Test System
We used the Keeneland Initial Delivery System [29] (KIDS)

for our case studies. KIDS is a Georgia Institute of Tech-
nology cluster deployed at Oak Ridge National Laboratory.
The system contained 120 HP ProLiant SL390 G7 compute
nodes. Each compute node contained 24 GB memory, two
Intel Xeon X5660 processors running at 2.80 GHz, and three
NVIDIA M2090 GPUs. The nodes were connected with an
Infiniband QDR interconnection network. The system used
the CentOS 6.3 Linux distribution on its compute nodes.
We used the Intel Composer XE 2013 SP1.1.106 (also re-
ported as version 14.0.1) compilers to build and run the test
applications, and OpenMPI 1.6.1 as the MPI library and
runtime.

4.2 LAMMPS
LAMMPS is a molecular dynamics simulator, written in

C++, that uses MPI for interprocess communication and
synchronization. We obtained the LAMMPS source code
from the project’s Git repository, and used revision 42bb280c
dated 2014-04-15. We modified the LAMMPS makefile to
build on KIDS, and to link in our version of the mpiP li-
brary that produces communication topology matrix files.
We ran LAMMPS with the EAM benchmark problem input
file using 96 processes in a 4 ⇥ 4 ⇥ 6 3D Cartesian process
topology.

When solving the EAM benchmark problem, LAMMPS
uses MPI point-to-point operations in a 3D nearest neighbor
communication pattern, and the MPI broadcast, allreduce,
and scan collective operations. The broadcast operations are
all rooted at MPI rank 0. The version of mpiP we used for
this study models the rootless MPI allreduce operation as
a reduce operation to rank 0, followed by a broadcast from
0 to all other operations. It also models the scan operation
as a gather operation of data from all processes to rank 0,
which then computes the scan result and scatters the result
to all processes. This may not be how the underlying MPI
implements these collective operations, but because mpiP
operates at the MPI profiling interface, it has no information
about the underlying implementation.

Figure 5 shows visualizations of the communication ma-
trix produced by mpiP for the 96-process LAMMPS run,
the patterns recognized by AChax in this matrix, and the
matrices produced by removing those patterns. To expose
detail that would be hidden if the blue saturation color map
of Figure 3 were used, this figure uses a heat map color
palette with “hotter” colors (e.g., yellow, orange) indicating
larger values and “cooler” colors (e.g., blue, purple) indi-
cating smaller values. Zero values in the communication
matrix are indicated using white blocks. As shown in the
figure, AChax recognized the 3D nearest neighbor commu-
nication pattern, including the correct dimensions of the 3D
Cartesion topology used. Because of the way mpiP models
MPI Scan and MPI Allreduce, AChax cannot distinguish
between these operations and MPI Bcast and MPI Reduce,
and has recognized the communication as the latter pair of
patterns. Lacking more information about how the MPI
library implements its rootless communication operations,
and having mpiP expose that information, the resulting pat-
terns reported by AChax are equivalent as far as their use-
fulness. We can express the LAMMPS communication be-

havior using the following expression, using the scale of each
recognized pattern as a coe�cient:

CLAMMPS = 13354 ·Broadcast(root : 0)+

700 ·Reduce(root : 0)+

19318888 · 3DNearestNeighbor(

dims : (4, 4, 6),

periodic : True)

The error in this expression, visualized as a communication
matrix, is shown in Figure 5d.

At first glance, the residual matrix produced by remov-
ing all recognized patterns (Figure 5d) makes it appear as if
AChax did not correctly determine the scale of the 3D near-
est neighbor pattern, because the residual pattern appears
to match the pure 3D nearest neighbor pattern. In fact,
AChax did recognize the scale correctly: after removing the
recognized pattern, there is a zero element (circled in the fig-
ure) in one of the diagonals that must be non-zero for a 3D
nearest neighbor pattern. The residual matrix produced by
AChax after removing recognized patterns provides the in-
teresting insight that not only does LAMMPS use a 3D near-
est neighbor communication pattern, the amount of data
LAMMPS communicates between neighbors varies. The col-
oration of Figure 5d indicates that for the input problem we
used, the LAMMPS nearest neighbor communication trans-
ferred more data in some dimensions than others. More
data was sent by process with rank i to its neighbors with
rank i± 1 (yellow blocks in the figure) than to its neighbors
along the next dimension (blue blocks in the figure), and
that more than to its neighbors along the final dimension
(purple blocks in the figure). Furthermore, the amount of
data sent by each proces to its neighbor along that third
dimension varies, as indicated by the fact that removing the
recognized pattern with its constant scale caused only one of
the would-be-purple blocks to have a zero value. If all pro-
cesses communicated the same amount along this dimension,
the resulting matrix would have no non-zeros in these diag-
onals, and the purple-colored blocks in Figure 5d would not
be there.

4.3 LULESH
The Livermore Unstructured Lagrangian Explicit Shock

Hydrodynamics application [13] (LULESH) is a proxy ap-
plication meant to approximate a typical hydrodynamics
model such as ALE3D [22]. LULESH is one of the appli-
cations being used for hardware/software co-design within
the U.S. Department of Energy’s Exascale Co-Design Cen-
ter for Materials in Extreme Environments [7]. Unlike a full
application, LULESH solves a specific, hard-coded problem.
We used LULESH version 2.0.3 [14]. This version is written
in C++ and can be built for serial execution or parallel ex-
ecution using MPI or MPI+OpenMP. We ran LULESH on
KIDS with 216 processes in a 6⇥ 6⇥ 6 3D process topology.

LULESH uses a limited number of MPI communication
operations: non-blocking point-to-point sends and receives,
and the reduce and allreduce collective operations. Never-
theless, LULESH exhibits interesting communication pat-
terns for AChax to characterize.

Figure 6 shows visualizations of the communication ma-
trix produced by mpiP for the 216-process LULESH run,
the patterns recognized by AChax in this matrix, and the
intermediate matrices produced by removing the recognized
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Inspiration I: Paradyn’s Performance Consultant

• Automated search through a 
space to find “point” that best 
explains observed performance

• Hypothesize, test, and refine
• Record results in a search tree
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Inspiration II: Sky Subtraction

• Given an image of the sky, remove the known to make it easier to 
recognize the unknown

- =

Recognizing and removing the contribution of a 2D nearest neighbor pattern in a 
synthetic communication matrix.  This represents one step in a search-based 
approach.
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Search Overview

• Associate application’s communication 
matrix with root node

• At root node, for each pattern in pattern 
library
– Attempt to recognize pattern in node’s matrix
– If recognized, subtract scaled pattern from 

node’s matrix to get child matrix
– Add child node with new matrix and edge to 

search result tree
– Recursively apply search starting at child 

node

3D nearest neighbor 2D nearest neighbor
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Pattern Recognition

• Library of scale-independent pattern generators and recognizers
• When attempting to recognize a pattern in a matrix

– Determines number of processes
– Determines dimension sizes for multidimensional patterns
– Determines scale of the pattern
– Determines root process for rooted collectives
– Detects origin corner for wavefront patterns

• Heuristics for lightweight checks when possible



11 Roth AChax July 2018
RESOURCE & APPL ICATION PRODUCTIVITY THROUGH 

COMPUTAT ION ,  I NFORMAT ION ,  AND DATA SC I ENCE

SCIDAC4 INSTITUTE 

RAPIDS

Search Result

• Residual: total 
communication volume 
in a communication 
matrix

• When search finishes, 
path between root and 
leaf with smallest 
residual indicates 
patterns that best 
explain original 
communication matrix

6938568

2809800

many-to-many collective
{'scale' : 1024}

2551752

broadcast
{'scale' : 4096,

'root' : 0}

reduce
{'scale' : 16,
'root' : 3}

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

2519496

broadcast
{'scale' : 512,

'root' : 6}

reduce
{'scale' : 16,
'root' : 3}

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

2518488

reduce
{'scale' : 16,
'root' : 3}

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

2239960

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

421336

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

2379224

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

404952

2D nearest neighbor
{'dims': (8, 8),
'scale' : 7168,

'periodic' : [True, True]}

200152

2D nearest neighbor
{'dims': (16, 4),

'scale' : 1024,
'periodic' : [False, False]}

544216

2D nearest neighbor
{'dims': (8, 8),
'scale' : 7168,

'periodic' : [True, True]}

2239960

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 1, 0)}

404952

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (1, 1, 0)}

667096

2D nearest neighbor
{'dims': (8, 8),
'scale' : 6144,

'periodic' : [True, True]}
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Three Problems

• Ambiguity in pattern recognition
• Greedy recognition approach can be too greedy
• Inefficient implementation
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Problem 1: Pattern Recognition Ambiguity

• Representing communication data using traditional communication 
matrix leads to ambiguity, especially with collectives

Broadcast or 
multiple point-
to-point?

Worst case
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Augmented Communication Graphs (ACGs)

• Instead of traditional 
communication matrix, 
represent communication 
data as a graph

• Vertices for processes
– Separate sender/receiver roles

• Edges denote 
communication occurred
– Labeled with operation count 

and message volume

• To make it easier to discern 
collective operations, 
augment the graph with 
vertices representing 
communicators
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And That Worst Case?

• As presented so far, better but not ideal
• May need to label communicator vertices 

with collective operation or operation type
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Problem 2: Too Greedy

• When recognizing a pattern, 
AChax recognizes as much 
data as possible for that 
pattern

• Can cause automated search 
to fail to recognize some 
pattern combinations

2.2 Non-Greedy Volume Attribution

When our original approach recognizes a pattern, it attributes as much data
volume as possible to the pattern. For example, if the original recognized a
broadcast from rank 0 to all other program ranks, it finds the minimum of the
entries in the 0th row of the communication matrix and uses this as the scale of
the broadcast. When it subtracts this parameterized pattern from the residual
matrix, any entries in that row that formerly held this scale value now hold 0,
indicating all communication between process 0 and the corresponding rank has
been accounted for.

There are pattern combinations for which this greedy technique prevents
the original approach from identifying all the patterns that comprise the com-
bination. For example, the following simple combination of patterns are not
recognized correctly by our original approach:

– broadcast: {’scale’: 4096, ’root’: 0}
– broadcast: {’scale’: 512, ’root’: 3}
– reduce: {’scale’: 16, ’root’: 2}
– many-to-many: {’scale’: 1024}

Our original greedy technique first recognizes a many-to-many pattern, and at-
tributes 1040 bytes as the scale of the pattern because that is the minimum
amount associated with any of the edges involved in the pattern. But, removing
a many-to-many pattern with this scale from the graph results in an invalid
graph: some of the resulting edges have zero volume but non-zero counts. For
this pattern combination, the broadcasts and reduce result in “extra” volume
that is indistinguishable from a many-to-many pattern. Considering the broad-
cast or reduce pattern before the many-to-many is no better: removing one of
these patterns first results either in an invalid graph or consumes too much data
volume, precluding the recognition of some other pattern.

To address the problem of attributing too much data to a recognized pattern,
our new approach determines when removal of a recognized pattern would result
in an invalid ACG, and if so it attempts to recognize the pattern with a smaller
scale. More precisely, upon recognizing a pattern P with scale SMAX in a resid-
ual graph R and determining that removing P (SMAX) from R would result in
an invalid ACG, our new approach identifies one or more scales Si < SMAX
to consider. For each Si, it refines its search by removing P (Si) from R, and
recursively applies its search strategy to the resulting residual graph. If there
are more than one such Si, the search branches just as it would if more more
than one pattern were recognized in R.

As presented so far, our approach su↵ers from an unfortunate problem: if
P (SMAX) can be recognized in the residual graph R, then P can be also rec-
ognized within R for every integer 0 < S < SMAX. Branching the search for
every such S would often result in an explosion in the number of pattern space
states our approach needs to consider, making the characterization problem in-
tractable. To control the potential for state space explosion, we use a heuristic
technique for identifying “interesting” scales to consider. Our strategy considers
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Non-Greedy Pattern Recognition

• If pattern recognized, check if removing pattern with maximum scale 
will result in invalid ACG

• If so, find smaller scale(s) and refine search at each
• Problem: if pattern recognized at maximum scale S, can be 

recognized for every integer scale between 0 and S
– Search space explosion

• Instead, find “interesting” scale values
• Heuristic based on communication count differences on ACG edges

– Current implementation may still refine at large number of scales
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Problem 3: Inefficient Search

• Original AChax implementation 
susceptible to doing lots of 
redundant work

• E.g., pattern combination from 
original AChax paper
– Search results tree has 506 nodes
– 180 leaves (“best” for given search 

refinement)
– Only 3 distinct residual values in leaves

• Instead, prune search when 
root→node path is permutation of 
another root→node path

6938568

2809800

many-to-many collective
{'scale' : 1024}

2551752

broadcast
{'scale' : 4096,

'root' : 0}

reduce
{'scale' : 16,
'root' : 3}

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

2519496

broadcast
{'scale' : 512,

'root' : 6}

reduce
{'scale' : 16,
'root' : 3}

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

2518488

reduce
{'scale' : 16,
'root' : 3}

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

2239960

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

421336

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

2379224

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

404952

2D nearest neighbor
{'dims': (8, 8),
'scale' : 7168,

'periodic' : [True, True]}

200152

2D nearest neighbor
{'dims': (16, 4),

'scale' : 1024,
'periodic' : [False, False]}

544216

2D nearest neighbor
{'dims': (8, 8),
'scale' : 7168,

'periodic' : [True, True]}

2239960

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 1, 0)}

404952

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (1, 1, 0)}

667096

2D nearest neighbor
{'dims': (8, 8),
'scale' : 6144,

'periodic' : [True, True]}
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Implementation

• Original AChax tool
– Python, using NumPy and SciPy for matrix ops and I/O
– MatrixMarket format for communication matrix files

• AChaxG – ACG-based tool
– Still Python
– Graph-tool module for I/O, analysis, and visualization of ACGs
– VERY slow ⇒ recently back to MatrixMarket representation of ACG

• Simple ACG viewer
– Interactive, highlights edges to/from selected nodes

• Grabber: MPI communications data capture library
– C++ with Boost and Todd Gamblin’s MPI wrapper generator
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Case Study: Xolotl

• Plasma surface interactions model
– C++, MPI, PETSc

• Ran on OLCF Eos Cray XC30
– 1D problem, 2048 grid points
– 32 processes, 5 time steps

• AChaxG recognized broadcast, reduce, and 
1D nearest neighbor patterns – didn’t account 
for much

• Interactive visualization exposed point-to-point 
collectives (eventually found within PETSc)
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Lots Left to Do

• Handle patterns whose communication volume depends on specific 
sender/receiver pair
– Statistical distributions instead of constant scales?

• Handle sub-communicators and tightly-coupled MPMD apps
– Two-stage pattern recognition (identify subcommunicators then original search)?

• Handle apps that re-number ranks
• Explore alternative approaches

– Optical pattern recognition with machine learning
– Matrix optimization problem using traditional solver techniques

• Improve recognition performance (parallelization)
• Scalable graph viewer
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Summary

• Developing automated communication pattern recognition to support debugging, 
optimization, system choice, system design

• Recently augmented automated communication pattern recognition approach to use:
– Communication graphs augmented with information about collectives
– Aggressive search space pruning

• Exploring alternatives: using statistical distributions, machine learning, optical pattern 
recognition, parallelization

• Publications
– P.C. Roth, J.S. Meredith, J.S. Vetter, “Automated Characterization of Parallel Application 

Communication Patterns,” HPDC’15
– P.C. Roth, “Improved Accuracy for Automated Communication Pattern Characterization Using 

Communication Graphs and Aggressive Search Space Pruning,” ESPT’17.  Published as LNCS 
11027 (to appear)

• For more information: rothpc@ornl.gov


