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What	is	an	HPC	Workflow	?
Holistic	View

– One	science	effort	across	a	period	of	time/campaign,	or	for	1	
specific	goal	– may	include	multiple	platforms	or	labs

– Track	resource	utilization,	performance,	and	progress,	data	
movement

– Includes	System	Services	– power,	resource	balance,	scheduling,	
monitoring,	data	movement,	etc.

– Includes	Data	Center	– power,	cooling,	physical	placement	of	data	
and	jobs

– Informed	by	&	Interfaces	with	the	Application	and	Experiment	
Views

– Includes	hardware,	system	software	layers,	application
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Foundational Work:  All Layers of Workflow and their Relationships
Layer 0 – Campaign
• Process through time of repeated Job Runs
• Changes to approach, physics and data needs as a campaign or 

project is completed - Working through phases
Layer 1 – Job Run
• Application to application that constitute a suite job run series
• May include closely coupled applications and decoupled ones that 

provide an end-to-end repeatable process with differing input 
parameters

• User and system interaction, to find an answer to a specific science 
question. 

Layer 2 – Application
• One or more packages with differing computational and data requirements 

Interacts across memory hierarchy to archival targets
• The subcomponents of an application {P1..Pn} are meant to model various 

aspects of the physics 
Layer 3 – Package
• The processing of kernels within a phase and associated interaction with 

various levels of memory, cache levels and the overall underlying platform
• The domain of the computer scientist
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We described a layer above the 
application layer (2) that posed use 
cases that used the application in 
potential different ways. This also 
allowed the entry of environment 
based entities that impact a given 
workflow and also allow impact of 
scale and processing decisions. At 
this level we can describe time, 
volume and speed requirements.

Layer 1 – Ensemble of applications – Use Case – example template
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Our	Goal

Measurement	infrastructure	in	support	of		Holistic	HPC	Workflow	
Performance	Analysis	and	Validation



Goal	#1:		PPerfG

• Motivation:		How	can	we	automatically	generate	the	workflow	layer	
diagrams?	

• Initial	Focus:			
• Layer	2	(Application):		One	or	more	packages	with	differing	computational	and	data	
requirements	Interacts	across	memory	hierarchy	to	archival	targets

• Approach:
• Implement	simple	prototype	using	python	and	TkInter
• Investigate	data	collection	options
• Evaluate	with	a	case	study
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PPerfG

• PPerfG:		A	Visualization	Tool	for	Holistic	HPC	Workflows		for	use	in	both	
performance	diagnosis	and	procurement

• Captures	the	data	movement	behavior	between	storage	layers,	and	
between	different	stages	of	an	application

• Challenges:	Measurement	and	Data	integration	to	generate	the	display
• Initial	prototype	developed	with	Python	and	TkInter
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PPerfG Prototype
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PPerfG Prototype
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PPerfG Prototype:		simple	json input	file
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Case	Study:		The	DroughtHPC1 Project	Goals

• Develop	a	performant	implementation	of	DroughtHPC,	a	novel	approach	to	
drought	prediction	developed	at	Portland	State	University

• Scale	the	application	to	do	finer-grained	simulations,	and	to	simulate	a	larger	
geographical	area

o DroughtHPC
o improves	prediction	accuracy	for	a	target	geographical	area
o uses	data	assimilation	techniques	that	integrate	data	from	hydrologic	models	and	satellite	

data
o Uses	Monte	Carlo	methods	to	generate	a	number	of	samples	per	cell
o Inputs	span	a	variety	of	data:	soil	conditions,	snow	accumulation,	vegetation	layers,	canopy	

cover	and	meteorological	data
o Uses	Variable	Infiltration	Capacity	(VIC)	Macroscale	Hydrologic	Model	2

1 https://hamid.people.ua.edu/research.html
2 Liang,	X.,	D.	P.	Lettenmaier,	E.	F.	Wood,	and	S.	J.	Burges	(1994),	A	simple	hydrologically	based	model	of	land	surface	water	
and	energy	fluxes	for	general	circulation	models, J.	Geophys.	Res., 99(D7),	14415–14428, doi:10.1029/94JD00483
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Case	Study:		DroughtHPC Code

• Application	is	written	in	Python,	and	uses	two	hydrologic	models	VIC	[2]	
written	in	C,	and	PRMS	[3]	written	in	FORTRAN	and	C

• The	modeling	codes	are	treated	as	“black	boxes”	by	the	domain	scientists
• Land	surface	of	the	target	geographical	area	is	modeled	as	a	grid	of	

uniform	cells,	and	simulation	divides	it	into	jobs,	with	group	of	25	cells	in	
each	job

• Data	is	Small	by	our	standards:		For	a	job	that	simulates	50	meteorological	
samples	and	one	month	time	period:

• input	data	size	:	144.5	MB
• satellite	data	:	132	MB

• Runtime	for	1 job	(25	cells)	on	single-node	is	approximately	two	hours	
with	the	initial	Python	prototype
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Initialization	Overheads

• Mean	of	30	runs,	simulation	of	24	hours	(one	hour	time	steps)
• Columbia	river	basin	(CRB)	has	5359	cells	in	VIC	4	dataset,	but	it	has	11280	cells	in	VIC	5	data	set.	The	data	used	in	the	
meteorological	forcing	is	different	between	the	two	versions.	VIC	5	data	includes	precipitation,	pressure,	temperature,	
vapor	pressure,	and	wind	speed.	VIC	4	data	specifies	maximum	temperature,	minimum	temperature,	precipitation	and	
wind	speed.	
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Model	 Data	 Initialization	
(Milliseconds)	

Work	
(Milliseconds)	

Write	Output	
(Milliseconds)	

Total	

VIC	4	–	
ASCII	text	
files	

Sample	–	
single	cell	

177.592 
(99%)	

      0.241	 0.144	 177.977 

CRB	25	
cells		

4,079.126 
(98%)	

    70.990	 10.774	 4,170.89 

VIC	5	–	
NetCDF	
files	

Sample	–	
Stehekin 
data – 20 
cells	

19,088.990 
(99%)	

  196.116	 29.065	 19,314.171 

CRB	–	
11280	cells	

26,277.904 
(47%)	

29,001.285	 80.398	 55,359.587 

	



DroughtHPC /	VIC	calling	patterns

• Initial	DroughtHPC prototype	code	(python)	called	VIC	version	4 (“classic	
driver”):	

• For	each	grid	cell
• For	each	simulation	time	step

• For	each	probabilistic	sample
• Call	VIC
• Use	results	to	compute	inputs	for	next	time	step

• VIC	4	is	Time-before-space
• New	VIC	5	“image	driver”	is	Space-before-time,	designed	for	call-once

• Uses	MPI,	embarassingly parallel	model	(each	cell	computation	is	independent)
• Single	call	to	VIC	can	now	compute	over	all	data,	reducing	call	overhead

• Our	solution:	add	extensibility	to	VIC,	inject	our	code	into	the	model
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PPerfG:		Visualizing	Data	Patterns	Across	Separate	Codes
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drawing	(not	screenshot)	



PPerfG:	Illustrating	the	change	in	calling	pattern
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PPerfG Data	Collection

• Performance	Data	was	collected	with	a	variety	of	performance	tools
• No	single	performance	tool	provides	all	of	the	data	we	need
• No	tool	characterizes	the	calling	pattern	/	interactions	between	Python	and	VIC

• PerfTrack performance	database1 used	to	integrate	the	data	postmortem	but	some	integration	was	
done	manually

• Interface	over	PostGreSQL relational	database
• Multiple	runs	for	different	measurement	tools

• Json file	was	generated	manually

1Karen	L.	Karavanic,	John	May,	Kathryn	Mohror,	Brian	Miller,	Kevin	Huck,	Rashawn	Knapp,	Brian	Pugh,	"Integrating	Database	Technology	with	Comparison-based	Parallel	Performance	Diagnosis:	The	PerfTrack Performance	Experiment	
Management	Tool," SC2005.
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PPerfG Future	Work

• How	to	ease	comparison	of	different	versions	with	PPerfG?
• Slider	to	move	forward	over	time	from	start	to	finish?
• Can	we	generate	the	json automatically	from	PerfTrack?	
• How	to	integrate	application/developer	semantics	with	measurement	data?

• How	to	link	data	structures	in	memory	with	files?	
• How	to	label	the	phases?
• How	to	collect	the	loop	information	at	the	bottom?	

• How	to	show	scaling	behaviors?
• Number	of	files	per	simulation	day?
• Size	of	files	per	simulation	cell?
• Traffic	Map	idea:		use	edge	colors	to	show	data	congestion
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Conclusions	and	Future	Work

• We	propose	a	new	performance	metric:		Workflow	Critical	Path
• WCP:		What	part	of	the	Entire	Workflow to	focus	on?	
• DroughtHPC case	study:		pattern	of	file	activity,	calling	pattern,	overhead	of	VIC	
initialization

• We	have	designed	PPerfG,	a	visualization	for	Workflow	Layer	2:	Application
• Workflow	Layers:		different	perspectives	of	an	HPC	workflow	used	in	Holistic	HPC	
Performance	Diagnosis

• Data	Collection	is	challenging
• Need	to	integrate	Layer	3	(Package)	– drilling	down	into	DroughtHPC and	VIC

• PerfTrack is	useful	to	gather	and	do	some	integration	of	data
• Currently	the	generation	of	json files	is	mostly	manual
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