
John Mellor-Crummey
Department of Computer Science

Rice University

johnmc@rice.edu

Extending HPCToolkit for  
GPU-accelerated Systems

Scalable Tools Workshop July 2018

Outline
• OpenMP 4.5 - 5.0

• OMPT API for accelerators

• OMPT implementation with accelerators

• HPCToolkit
— interface with accelerator programming models
— measurement
— attribution
— code-centric presentation

• Unexpected Challenges

• Remaining work
— HPCToolkit
— libomptarget

!2

OpenMP 4.5 and OpenMP 5.0
• Offload computation to accelerators

• Avoid data movement for each target construct

!3
Figure credit: OpenMP Standards Committee, OpenMP Application

ProgrammingInterface Examples.Version 4.5.0, November 2016.

OpenMP 5 API for Target Devices
• Device-independent host

callbacks for target devices
— ompt_callback_device_initialize
— ompt_callback_device_load
— ompt_callback_target

 enter/exit target region
— ompt_callback_target_map
— ompt_callback_target_data_op

 alloc
 delete
 transfer_to_device  
transfer_from_device

— ompt_callback_target_submit
 launch kernel

— ompt_callback_device_unload
— ompt_callback_device_finalize

!4

• Device-specific API for
target devices

OpenMP 5 Implementation Requirements
• Works with or without a tool that supports OMPT

• Works with tool support for OMPT
— enabled
— disabled

• OpenMP implementation strategies require demand-driven
implementation
— clang-generated heterogeneous binaries

– constructor prior to main loads code onto device using libomptarget

!5

LLVM OpenMP Software Ecosystem

!6

GPU-accelerated OpenMP 5 Application

(Host executable and/or  
libraries contain CUBINs)

HPCToolkit’s
libhpcrun

libomp

libcuda libcupti

OMPT

OMPT

OMPT

libomptarget.nvptx

Linux

libomptarget

CW

OMPT Initialization for Accelerators

!7

tool application libomp libomptarget libomptarget.nvptx
__lib_csu_init

calls
target_register_lib

__tgt_register_lib
initiates demand loading

of plugins

libomp_libomptarget
force OpenMP

initialization
calls lot_init

ompt_init
calls

libomp_libomptarget 
(lot_init, lot_fini)

ompt_start_tool
returns tool_initializer

ompt_pre_init
calls  

ompt_start_tool

tool_initializer(lookup)
lookup libomp entries

register callbacks

ompt_post_init
calls  

tool_initializer(lomp_look
up)

lomp_lookup(…)

lot_init(lomp_lookup)
obtain all device

callbacks from libomp
using lookup

call  
__tgt_rtl_init_device

__tgt_rtl_init_device

libomptarget_rtl_ompt_
init
calls pl_init(lot_lookup)

ompt_init
calls libomptarget_rtl_ompt_init 
(pl_init, pl_fini)

lot_lookup(…)
pl_init(lot_lookup)
obtain device callbacks from
libomptarget

tool_device_initialize call tool device_initialize

tool_device_load call __tgt_rtl_load_binary __tgt_rtl_load_binary
calls tool device_load callback

…

…

…

HPCToolkit Support for CUDA & OpenACC

!8

GPU-accelerated Application using CUDA

(Host executable and/or  
libraries contain CUBINs)

HPCToolkit’s
libhpcrun

libomp

libcuda libcupti

OMPT

OMPT

OMPT

libomptarget.nvptx

Linux

libomptarget

CW

CW

HPCToolkit Measurement of GPUs
• Registers for callbacks associated with target devices

— device control
– device_initialize/finalize
– device_load/unload

— target operations
– target_region, target_submit, target_data_op

— buffer_request/complete

• Computes non-overlapping relocation of CUBIN functions

• Adds CUBINs to the load map

• Processes buffer of events delivered by CUPTI Activity API
— PC samples: relocates PCs to facilitate source correlation
— kernel invocations
— explicit data copies
— implicit data copies (page faults)

• Correlates with context using CUPTI external correlation ids!9

HPCToolkit Attribution
• HPCToolkit’s hpcstruct performs binary analysis of

heterogeneous binaries
— host binary
— embedded CUBIN segments

• Analysis of CUBINs
— relocates functions so that they are non-overlapping
— recovers program structure

– inlined code and line map for unoptimized binaries (with -G)
– line map only for optimized binaries (with —generate-line-info)

— associates structure with code addresses
– handles both unoptimized and optimized CUBINs

• Produces program structure file
— load module for host
— load module for each cubin
— each load module contains

– files, functions, inlined functions, statements !10

Code-Centric Attribution for OpenMP

!11

Code-Centric Attribution for CUDA

!12

Unexpected Challenges - I
• Challenge: extra threads

— CUDA helper thread
— CUPTI helper threads

– CUPTI spawns a pthread every time it launches a kernel
 coordinate measurement of asynchronous operations?

• Approach
— modify HPCToolkit’s libmonitor to record return address

associated with pthread_create call
— ignore a thread spawned by any of NVIDIA’s libraries

– recognize libraries by an API function they supply rather than by name

!13

Unexpected Challenges - II
• Large overhead for PC Sampling with CUPTI

• Assessing the situation
— Test case: LLNL’s rajaperfsuite

– uses RAJA portability layer to offload kernels to a GPU
— Observe overhead for turning on the CUPTI Activity API to

measure GPU performance using PC Sampling

!14

CUPTI User Space Overhead for PC Sampling
• memset added to CUDA launch to support PC Sampling with

CUPTI accounts for 28% of total execution time

!15

CUPTI Kernel Overhead for PC Sampling
• nv_alloc_system_pages added to CUDA launch to support PC

Sampling with CUPTI accounts for 42% of total execution time

!16

CUPTI Kernel Overhead for PC Sampling

!17

Remaining Work: HPCToolkit
• hpcrun

— upgrade OMPT support from TR4 to OpenMP 5 standard
 asynchronous assembly of calling contexts mediated by  

wait-free operations on data structures
— integrate GPU support to allow both CUDA and OpenMP 5 in the same execution
— add support for sample-based tracing of GPU activity
— complete support for sparse metric sets

– many GPU metrics
– few nodes in CCT have GPU metrics
– goal: avoid space cost of empty GPU metrics almost everywhere

— test support for OpenACC

• hpcstruct
— integrate support for parsing dot CFGs for NVIDIA CUBINs

– enable us to attribute GPU kernel performance at the loop level
— compute approximate call tree on GPUs

– when there is a single call to a function, know its calling context
– when there are multiple calls, proportionally attribute cost to callers

• hpcviewer
— needs top-down support for analyzing GPU metrics

• hpctraceviewer
— needs support for displaying traces of GPU kernel executions

!18

Remaining Work: libomptarget
• Refine OMPT support for use of libomptarget without OpenMP

• Upstream changes to libomptarget

• Hand off OMPT GPU support to IBM for direct integration into
LOMP

!19

Unmet Needs from NVIDIA
• API for unpacking .nv_fatbin segments

— NVIDIA has refused to provide header file or API
— complicates binary analysis of heterogeneous binaries

constructed with NVIDIA nvcc
– CUDA and OpenACC

• API for computing control flow graphs for CUBINs
— currently, execute nvdisasm and parse its output

• CUPTI Activity API for PC sampling has significant overhead
— long time spent initializing memory (profile buffers?) in both user

space and the kernel when PC sampling is enabled

!20

NVIDIA has committed to working on this one for Volta

