Extending HPCToolkit for GPU-accelerated Systems

John Mellor-Crummey

Department of Computer Science Rice University

johnmc@rice.edu

Scalable Tools Workshop July 2018

Outline

- OpenMP 4.5 5.0
- **OMPT API for accelerators**
- **OMPT** implementation with accelerators
- HPCToolkit
 - interface with accelerator programming models
 - measurement
 - attribution
 - code-centric presentation
- Unexpected Challenges
- Remaining work
 - HPCToolkit
 - libomptarget

OpenMP 4.5 and OpenMP 5.0

- Offload computation to accelerators
- Avoid data movement for each target construct

```
Example target_data.3.c
#include <math.h>
#define COLS 100
void gramSchmidt(float Q[][COLS], const int rows)
ſ
    int cols = COLS;
    #pragma omp target data map(Q[0:rows][0:cols])
    for(int k=0; k < cols; k++)
    ſ
        double tmp = 0.0;
        #pragma omp target map(tofrom: tmp)
        #pragma omp parallel for reduction(+:tmp)
        for(int i=0; i < rows; i++)</pre>
            tmp += (Q[i][k] * Q[i][k]);
        tmp = 1/sqrt(tmp);
        #pragma omp target
        #pragma omp parallel for
        for(int i=0; i < rows; i++)</pre>
            Q[i][k] \star = tmp;
    }
}
```

Figure credit: OpenMP Standards Committee, OpenMP Application ProgrammingInterface Examples.Version 4.5.0, November 2016.

OpenMP 5 API for Target Devices

- Device-independent host callbacks for target devices
 - ompt_callback_device_initialize
 - ompt_callback_device_load
 - ompt_callback_target enter/exit target region
 - ompt_callback_target_map
 - ompt_callback_target_data_op alloc
 - delete
 - transfer_to_device transfer_from_device
 - ompt_callback_target_submit launch kernel
 - ompt_callback_device_unload
 - ompt_callback_device_finalize

• Device-specific API for target devices

Entry Point String Name	Type Signature
"ompt_get_device_num_procs"	ompt_get_device_num_procs_t
"ompt_get_device_time"	<pre>ompt_get_device_time_t</pre>
"ompt_translate_time"	<pre>ompt_translate_time_t</pre>
"ompt_set_trace_ompt"	<pre>ompt_set_trace_ompt_t</pre>
"ompt_set_trace_native"	<pre>ompt_set_trace_native_t</pre>
"ompt_start_trace"	ompt_start_trace_t
"ompt_pause_trace"	ompt_pause_trace_t
"ompt_flush_trace"	ompt_flush_trace_t
"ompt_stop_trace"	ompt_stop_trace_t
"ompt_advance_buffer_cursor"	<pre>ompt_advance_buffer_cursor_t</pre>
"ompt_get_record_type"	ompt_get_record_type_t
"ompt_get_record_ompt"	ompt_get_record_ompt_t
"ompt_get_record_native"	<pre>ompt_get_record_native_t</pre>
"ompt_get_record_abstract"	<pre>ompt_get_record_abstract_t</pre>

OpenMP 5 Implementation Requirements

- Works with or without a tool that supports OMPT
- Works with tool support for OMPT
 - enabled
 - disabled
- OpenMP implementation strategies require demand-driven implementation
 - clang-generated heterogeneous binaries
 - constructor prior to main loads code onto device using libomptarget

LLVM OpenMP Software Ecosystem

OMPT Initialization for Accelerators

HPCToolkit Support for CUDA & OpenACC

HPCToolkit Measurement of GPUs

- Registers for callbacks associated with target devices
 - device control
 - device_initialize/finalize
 - device_load/unload
 - target operations
 - target_region, target_submit, target_data_op
 - buffer_request/complete
- Computes non-overlapping relocation of CUBIN functions
- Adds CUBINs to the load map
- Processes buffer of events delivered by CUPTI Activity API
 - PC samples: relocates PCs to facilitate source correlation
 - kernel invocations
 - explicit data copies
 - implicit data copies (page faults)
- Correlates with context using CUPTI external correlation ids_q

HPCToolkit Attribution

- HPCToolkit's hpcstruct performs binary analysis of heterogeneous binaries
 - host binary
- Analysis of CUBINs
 - relocates functions so that they are non-overlapping
 - recovers program structure
 - inlined code and line map for unoptimized binaries (with -G)
 - line map only for optimized binaries (with —generate-line-info)
 - associates structure with code addresses
 - handles both unoptimized and optimized CUBINs
- Produces program structure file
 - load module for host
 - load module for each cubin
 - each load module contains
 - files, functions, inlined functions, statements

Code-Centric Attribution for OpenMP

	1-hpcviewer: lu	Ilesh2.0			
lulesh.cc X					
002 {					
003					
	_teams(TEAMS) thread_limit(THREADS) if (US	E_GPU == 1)			
<pre># pragma omp distribute paral for(Index_t i2=0;i2<numelem;+-< pre=""></numelem;+-<></pre>					
$Real_t$ gamma[4][8];					
908					
$gamma[0][0] = Real_t(1.);$					
<pre>gamma[0][1] = Real_t(1.); gamma[0][2] = Real_t(-1.);</pre>					
$gamma[0][3] = Real_t(-1.);$					
<pre>gamma[0][4] = Real_t(-1.);</pre>					
$gamma[0][5] = Real_t(-1.);$					
<pre>gamma[0][6] = Real_t(1.); gamma[0][7] = Real_t(1.);</pre>					
$gamma[1][0] = Real_t(1.);$					
Calling Context View 🛛 🔧 Callers View	/ 📴 Elat Viow				
			TL_EXC_DEP:Sum (I) ST		STL_SYNC:Sum (I)
Experiment Aggregate Metrics		7.45e+07 100 %	1.68e+07 100 %	2.32e+07 100 %	3.04e+07 100 %
Experiment Aggregate Metrics			1.68e+07 100 % 1.68e+07 100 %	2.32e+07 100 % 2.32e+07 100 %	3.04e+07 100 % 3.04e+07 100 %
Experiment Aggregate Metrics <pre>cprogram root></pre>		7.45e+07 100 % 7.45e+07 100 %	1.68e+07 100 %	2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 %	3.04e+07 100 % 3.04e+07 100 % 3.04e+07 100 %
<pre>Experiment Aggregate Metrics <program root=""> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> </pre> <pre> </pre> </pre> <pre> </pre> </program></pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <!--</td--><td></td><td>7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 %</td><td>1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 %</td><td>2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 %</td><td>3.04e+07 100 % 3.04e+07 100 % 3.04e+07 100 % 3.04e+07 100 %</td></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>		7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 %	1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 %	2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 %	3.04e+07 100 % 3.04e+07 100 % 3.04e+07 100 % 3.04e+07 100 %
<pre>Experiment Aggregate Metrics <program root=""> <pre> <pre> <pre> <pre> <pre> <pre> <pre> </pre> </pre> <pre> <pre> <pre> <pre> </pre> </pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> </pre> </pre> </pre> </pre> </pre> <pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></program></pre>	ain&)	7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 %	1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 %	2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 %	3.04e+07 100 %
 Experiment Aggregate Metrics <program root=""></program> ♥ ➡ 500: main ♥ loop at lulesh.cc: 3231 ♥ ➡ 3225: LagrangeLeapFrog(Domain) 	ain&) in&)	7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 %	1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 %	2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 %	3.04e+07 100 % 1.58e+07 51.9%
 Experiment Aggregate Metrics <program root=""></program> ♥ ➡ 500: main ♥ loop at lulesh.cc: 3231 ♥ ➡ 3225: LagrangeLeapFrog(Domatic transmission) ♥ ➡ 3048: LagrangeNodal(Domatic transmission) 	ain&) in&) s(Domain&)	7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 4.13e+07 55.5%	1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 8.51e+06 50.8%	2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 1.46e+07 63.2%	3.04e+07 100 % 3.04e+07 100 % 3.04e+07 100 % 3.04e+07 100 % 3.04e+07 100 % 1.58e+07 51.9% 1.43e+07 47.1%
Experiment Aggregate Metrics <program root=""> ▼ ➡ 500: main ▼ loop at lulesh.cc: 3231 ▼ ➡ 3225: LagrangeLeapFrog(Doma ▼ ➡ 3048: LagrangeNodal(Doma ▼ ➡ 1570: CalcForceForNodes ▼ ➡ 1397: CalcVolumeForc</program>	ain&) in&) s(Domain&)	7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 4.13e+07 55.5% 3.71e+07 49.8%	1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 8.51e+06 50.8% 7.70e+06 45.9%	2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 1.46e+07 63.2% 1.33e+07 57.4% 1.31e+07 56.6%	3.04e+07 100 % 1.58e+07 51.9% 1.43e+07 47.1% 1.40e+07 46.2%
Experiment Aggregate Metrics <program root=""> ▼ ➡ 500: main ▼ loop at lulesh.cc: 3231 ▼ ➡ 3225: LagrangeLeapFrog(Doma ▼ ➡ 3048: LagrangeNodal(Doma ▼ ➡ 1570: CalcForceForNodes ▼ ➡ 1397: CalcVolumeForc ▼ ➡ 1353: CalcHourglas</program>	ain&) in&) s(Domain&) eForElems(Domain&)	7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 4.13e+07 55.5% 3.71e+07 49.8% 3.64e+07 48.8% 2.16e+07 29.0%	1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 8.51e+06 50.8% 7.70e+06 45.9% 7.55e+06 45.0%	2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 1.46e+07 63.2% 1.33e+07 57.4% 1.31e+07 56.6% 7.70e+06 33.2%	3.04e+07 100 % 1.58e+07 51.9% 1.43e+07 47.1% 1.40e+07 46.2% 8.36e+06 27.5%
Experiment Aggregate Metrics <program root=""> ▼ ➡ 500: main ▼ loop at lulesh.cc: 3231 ▼ ➡ 3225: LagrangeLeapFrog(Doma ▼ ➡ 3048: LagrangeNodal(Doma ▼ ➡ 1570: CalcForceForNodes ▼ ➡ 1397: CalcVolumeForc ▼ ➡ 1353: CalcHourglas</program>	ain&) in&) s(Domain&) :eForElems(Domain&) :sControlForElems(Domain&, double*, double) urglassForceForElems(Domain&, double*, double*, d	7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 4.13e+07 55.5% 3.71e+07 49.8% 3.64e+07 48.8% 2.16e+07 29.0%	1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 8.51e+06 50.8% 7.70e+06 45.9% 7.55e+06 45.0% 4.64e+06 27.7%	2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 1.46e+07 63.2% 1.33e+07 57.4% 1.31e+07 56.6% 7.70e+06 33.2% 3.83e+06 16.5%	3.04e+07 100 % 3.04e+07 100 % 3.04e+07 100 % 3.04e+07 100 % 1.58e+07 100 % 1.43e+07 47.1% 1.40e+07 46.2% 8.36e+06 27.5% 4.30e+06 14.1%
Experiment Aggregate Metrics <program root=""> ▼ ➡ 500: main ▼ loop at lulesh.cc: 3231 ▼ ➡ 3225: LagrangeLeapFrog(Doma ▼ ➡ 3048: LagrangeNodal(Doma ■ ➡ 1570: CalcForceForNodes ■ ➡ 1397: CalcVolumeForc ■ ➡ 1353: CalcHourglas ■ ➡ 1279: CalcFBHou ■ ➡ 904: <unknow< td=""><td>ain&) in&) s(Domain&) :eForElems(Domain&) :sControlForElems(Domain&, double*, double) urglassForceForElems(Domain&, double*, double*, d</td><td>7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 4.13e+07 55.5% 3.71e+07 49.8% 3.64e+07 48.8% 2.16e+07 29.0% 1.13e+07 15.2% 9.53e+06 12.8%</td><td>1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 8.51e+06 50.8% 7.70e+06 45.9% 7.55e+06 45.0% 4.64e+06 27.7% 2.66e+06 15.9%</td><td>2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 1.46e+07 63.2% 1.33e+07 57.4% 1.31e+07 56.6% 7.70e+06 33.2% 3.83e+06 16.5% 3.24e+06 14.0%</td><td>3.04e+07 100 % 3.04e+07 100 % 3.04e+07 100 % 3.04e+07 100 % 1.58e+07 51.9% 1.43e+07 47.1% 1.40e+07 46.2% 8.36e+06 14.1% 3.67e+06 12.1%</td></unknow<></program>	ain&) in&) s(Domain&) :eForElems(Domain&) :sControlForElems(Domain&, double*, double) urglassForceForElems(Domain&, double*, double*, d	7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 4.13e+07 55.5% 3.71e+07 49.8% 3.64e+07 48.8% 2.16e+07 29.0% 1.13e+07 15.2% 9.53e+06 12.8%	1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 8.51e+06 50.8% 7.70e+06 45.9% 7.55e+06 45.0% 4.64e+06 27.7% 2.66e+06 15.9%	2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 1.46e+07 63.2% 1.33e+07 57.4% 1.31e+07 56.6% 7.70e+06 33.2% 3.83e+06 16.5% 3.24e+06 14.0%	3.04e+07 100 % 3.04e+07 100 % 3.04e+07 100 % 3.04e+07 100 % 1.58e+07 51.9% 1.43e+07 47.1% 1.40e+07 46.2% 8.36e+06 14.1% 3.67e+06 12.1%
Experiment Aggregate Metrics <program root=""> ▼ ➡ 500: main ▼ loop at lulesh.cc: 3231 ▼ ➡ 3225: LagrangeLeapFrog(Doma ▼ ➡ 3048: LagrangeNodal(Doma ■ ➡ 1570: CalcForceForNodes ■ ■ 1397: CalcVolumeForc ■ ■ 1353: CalcHourglas ■ ■ 1279: CalcFBHou ■ ➡ 904: <unknow ■ ➡ _omp_offlo ■ ➡ _omp_otflo</unknow </program>	ain&) in&) s(Domain&) seForElems(Domain&) ssControlForElems(Domain&, double*, double) urglassForceForElems(Domain&, double*, double*, d n procedure> pading_35_3a52475_ZL28CalcFBHourglassForceFor tlined_\$_debug\$_5	7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 4.13e+07 55.5% 3.71e+07 49.8% 3.64e+07 48.8% 2.16e+07 29.0% 1.13e+07 15.2% 9.53e+06 12.8%	1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 8.51e+06 50.8% 7.70e+06 45.9% 7.55e+06 45.0% 4.64e+06 27.7% 2.66e+06 15.9% 2.24e+06 13.4%	2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 1.46e+07 63.2% 1.33e+07 57.4% 1.31e+07 56.6% 7.70e+06 33.2% 3.83e+06 16.5% 3.24e+06 14.0%	3.04e+07 100 % 1.58e+07 51.9% 1.43e+07 47.1% 1.40e+07 46.2% 8.36e+06 27.5% 4.30e+06 14.1% 3.67e+06 12.1%
Experiment Aggregate Metrics <program root=""> ▼ ➡ 500: main ▼ loop at lulesh.cc: 3231 ▼ ➡ 3225: LagrangeLeapFrog(Doma ▼ ➡ 3048: LagrangeNodal(Doma ▼ ➡ 1570: CalcForceForNodes ▼ ➡ 1397: CalcVolumeForc ▼ ➡ 1353: CalcHourglas ▼ ➡ 1279: CalcFBHou ▼ ➡ 904: <unknow ▶ ➡ _omp_offlo ▼ ➡ \$_omp_out Lulesh.cc: 90</unknow </program>	ain&) in&) s(Domain&) seForElems(Domain&) ssControlForElems(Domain&, double*, double) urglassForceForElems(Domain&, double*, double*, d urglassForceForElems(Domain&, double*, double*, d n procedure> nading_35_3a52475_ZL28CalcFBHourglassForceF tlined_\$_debug\$_5 D6	7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 4.13e+07 55.5% 3.71e+07 49.8% 3.64e+07 48.8% 2.16e+07 29.0% 1.13e+07 15.2% 9.53e+06 12.8% 2.91e+06 3.9% 2.82e+06 3.8% 1.30e+05 0.2%	1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 8.51e+06 50.8% 7.70e+06 45.9% 7.55e+06 45.0% 4.64e+06 27.7% 2.66e+06 15.9% 2.24e+06 13.4% 3.79e+04 0.2% 1.23e+06 7.4% 5.48e+04 0.3%	2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 1.46e+07 63.2% 1.33e+07 57.4% 1.31e+07 56.6% 7.70e+06 33.2% 3.83e+06 16.5% 3.24e+06 14.0% 4.02e+05 1.7% 1.45e+06 6.3% 6.30e+04 0.3%	3.04e+07 100 % 3.04e+07 100 % 3.04e+07 100 % 3.04e+07 100 % 1.58e+07 51.9% 1.43e+07 47.1% 1.40e+07 46.2% 8.36e+06 14.1% 3.67e+06 12.1%
Experiment Aggregate Metrics <program root=""> ▼ ➡ 500: main ▼ ➡ 3225: LagrangeLeapFrog(Doma ▼ ➡ 3048: LagrangeNodal(Doma ▼ ➡ 1570: CalcForceForNodes ▼ ➡ 1371: CalcVolumeForc ▼ ➡ 1353: CalcHourglas ▼ ➡ 1279: CalcFBHou ▼ ➡ 904: <unknow ▶ ➡_omp_offlo ▼ ➡ \$_omp_out lulesh.cc: 90 lulesh.cc: 95</unknow </program>	ain&) in&) s(Domain&) seForElems(Domain&) ssControlForElems(Domain&, double*, double) urglassForceForElems(Domain&, double*, double*, d urglassForceForElems(Domain&, double*, doubl	7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 4.13e+07 55.5% 3.71e+07 49.8% 3.64e+07 48.8% 2.16e+07 29.0% 1.13e+07 15.2% 9.53e+06 12.8% 2.91e+06 3.9% 2.82e+06 3.8% 1.30e+05 0.2% 1.02e+05 0.1%	1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 8.51e+06 50.8% 7.70e+06 45.9% 7.55e+06 45.0% 4.64e+06 27.7% 2.66e+06 15.9% 2.24e+06 13.4% 3.79e+04 0.2% 1.23e+06 7.4% 5.48e+04 0.3% 3.88e+04 0.2%	2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 1.46e+07 63.2% 1.33e+07 57.4% 1.31e+07 56.6% 7.70e+06 33.2% 3.83e+06 16.5% 3.24e+06 14.0% 4.02e+05 1.7% 1.45e+06 6.3% 6.30e+04 0.3%	3.04e+07 100 % 3.04e+07 100 % 3.04e+07 100 % 3.04e+07 100 % 1.58e+07 51.9% 1.43e+07 47.1% 1.40e+07 46.2% 8.36e+06 14.1% 3.67e+06 12.1%
Experiment Aggregate Metrics <program root=""> ▼ ➡ 500: main ▼ ■ 3225: LagrangeLeapFrog(Domain ▼ ➡ 3048: LagrangeNodal(Domain) ▼ ➡ 3048: LagrangeNodal(Domain) ▼ ➡ 1570: CalcForceForNodes ▼ ➡ 1397: CalcVolumeForce ▼ ➡ 1353: CalcHourglass ▼ ➡ 1279: CalcFBHout ▼ ➡ 904: <unknown ■ ➡ _omp_offlo ▼ ➡ _s_omp_outt Iulesh.cc: 90 Iulesh.cc: 97</unknown </program>	ain&) in&) s(Domain&) seForElems(Domain&) ssControlForElems(Domain&, double*, double) urglassForceForElems(Domain&, double*, double*, d urglassForceForElems(Domain&, double*, double*, d urglassForceForElems(Domain&, double*, double*, d urglassForceForElems(Domain&, double*, double*, d urglassForceForElems(Domain&, double*, double*, double*, d urglassForceForElems(Domain&, double*, doubl	7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 4.13e+07 55.5% 3.71e+07 49.8% 3.64e+07 48.8% 2.16e+07 29.0% 1.13e+07 15.2% 9.53e+06 12.8% 2.91e+06 3.9% 2.82e+06 3.8% 1.30e+05 0.2% 1.02e+05 0.1% 9.41e+04 0.1%	1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 8.51e+06 50.8% 7.70e+06 45.9% 7.55e+06 45.0% 4.64e+06 27.7% 2.66e+06 15.9% 2.24e+06 13.4% 3.79e+04 0.2% 1.23e+06 7.4% 5.48e+04 0.3% 3.88e+04 0.2%	2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 1.46e+07 63.2% 1.33e+07 57.4% 1.31e+07 56.6% 7.70e+06 33.2% 3.83e+06 16.5% 3.24e+06 14.0% 4.02e+05 1.7% 1.45e+06 6.3% 6.30e+04 0.3% 5.94e+04 0.3%	3.04e+07 100 % 3.04e+07 100 % 3.04e+07 100 % 3.04e+07 100 % 1.58e+07 51.9% 1.43e+07 47.1% 1.40e+07 46.2% 8.36e+06 14.1% 3.67e+06 12.1%
Experiment Aggregate Metrics <program root=""> ▼ ➡ 500: main ▼ ➡ 300p at lulesh.cc: 3231 ▼ ➡ 3225: LagrangeLeapFrog(Doma ▼ ➡ 3048: LagrangeNodal(Domai ▼ ➡ 1570: CalcForceForNodes ▼ ➡ 1379: CalcVolumeForc ▼ ➡ 1353: CalcHourglas: ▼ ➡ 1279: CalcFBHou ▼ ➡ 904: <unknow ▶ ➡ _omp_offlo ▼ ➡ _\$_omp_out lulesh.cc: 90 lulesh.cc: 97 lulesh.cc: 96</unknow </program>	ain&) in&) s(Domain&) reForElems(Domain&, double*, double) urglassForceForElems(Domain&, double*, double*, d urglassForceForElems(Domain&, double*, double*, double*, d urglassForceForElems(Domain&, double*, double*, double*, d urglassForceForElems(Domain&, double*, dou	7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 4.13e+07 55.5% 3.71e+07 49.8% 3.64e+07 48.8% 2.16e+07 29.0% 1.13e+07 15.2% 9.53e+06 12.8% 2.91e+06 3.9% 2.82e+06 3.8% 1.30e+05 0.2% 1.02e+05 0.1% 9.41e+04 0.1%	1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 8.51e+06 50.8% 7.70e+06 45.9% 7.55e+06 45.0% 4.64e+06 27.7% 2.66e+06 15.9% 2.24e+06 13.4% 3.79e+04 0.2% 1.23e+06 7.4% 5.48e+04 0.3% 3.88e+04 0.2% 3.82e+04 0.2%	2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 1.46e+07 63.2% 1.33e+07 57.4% 1.31e+07 56.6% 7.70e+06 33.2% 3.83e+06 16.5% 3.24e+06 14.0% 4.02e+05 1.7% 1.45e+06 6.3% 6.30e+04 0.3% 5.94e+04 0.2% 4.73e+04 0.2%	3.04e+07 100 % 3.04e+07 100 % 3.04e+07 100 % 3.04e+07 100 % 1.58e+07 51.9% 1.43e+07 47.1% 1.40e+07 46.2% 8.36e+06 14.1% 3.67e+06 12.1%
Experiment Aggregate Metrics <program root=""> ▼ ➡ 500: main ▼ loop at lulesh.cc: 3231 ▼ ➡ 3225: LagrangeLeapFrog(Domain ▼ ➡ 3048: LagrangeNodal(Domain ▼ ➡ 1570: CalcForceForNodes ▼ ➡ 1397: CalcVolumeForce ▼ ➡ 1353: CalcHourglass ▼ ➡ 1279: CalcFBHout ■ 12790: CalcFBHout ■ 1279</program>	ain&) in&) s(Domain&) reForElems(Domain&) ssControlForElems(Domain&, double*, double) urglassForceForElems(Domain&, double*, double*, d urglassForceForElems(Domain&, double*, double*, d urglassForceForElems(Domain&, double*, double*, d urglassForceForElems(Domain&, double*, double*, d urglassForceForElems(Domain&, double*, double*, double*, d urglassForceForElems(Domain&, double*, double*, double*, d urglassForceForElems(Domain&, double*,	7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 4.13e+07 55.5% 3.71e+07 49.8% 3.64e+07 48.8% 2.16e+07 29.0% 1.13e+07 15.2% 9.53e+06 12.8% 2.91e+06 3.9% 2.82e+06 3.8% 1.30e+05 0.2% 1.02e+05 0.1% 9.41e+04 0.1% 8.97e+04 0.1%	1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 8.51e+06 50.8% 7.70e+06 45.9% 7.55e+06 45.0% 4.64e+06 27.7% 2.66e+06 15.9% 2.24e+06 13.4% 3.79e+04 0.2% 1.23e+06 7.4% 5.48e+04 0.3% 3.88e+04 0.2% 3.86e+04 0.2% 3.86e+04 0.2%	2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 1.46e+07 63.2% 1.33e+07 57.4% 1.31e+07 56.6% 7.70e+06 33.2% 3.83e+06 16.5% 3.24e+06 14.0% 4.02e+05 1.7% 1.45e+06 6.3% 6.30e+04 0.3% 5.94e+04 0.2% 4.73e+04 0.2%	3.04e+07 100 % 1.58e+07 51.9% 1.43e+07 47.1% 1.40e+07 46.2% 8.36e+06 27.5% 4.30e+06 14.1% 3.67e+06 12.1%
Experiment Aggregate Metrics <program root=""> ▼ ➡ 500: main ▼ loop at lulesh.cc: 3231 ▼ ➡ 3225: LagrangeLeapFrog(Domain ▼ ➡ 3048: LagrangeNodal(Domain ▼ ➡ 1570: CalcForceForNodes ▼ ➡ 1397: CalcVolumeForce ▼ ➡ 1353: CalcHourglass ▼ ➡ 1279: CalcFBHout ■ 12790: CalcFBHout ■ 1279</program>	ain&) in&) s(Domain&) seForElems(Domain&, double*, double) urglassForceForElems(Domain&, double*, double*, d urglassForceForElems(Domain&, double*, double*, double*, d urglassForceForElems(Domain&, double*, dou	7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 4.13e+07 55.5% 3.71e+07 49.8% 3.64e+07 49.8% 2.16e+07 29.0% 1.13e+07 15.2% 9.53e+06 12.8% 2.91e+06 3.9% 2.82e+06 3.8% 1.30e+05 0.2% 1.02e+05 0.1% 9.41e+04 0.1% 8.897e+04 0.1%	1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 8.51e+06 50.8% 7.70e+06 45.9% 7.55e+06 45.0% 4.64e+06 27.7% 2.66e+06 15.9% 2.24e+06 13.4% 3.79e+04 0.2% 1.23e+06 7.4% 5.48e+04 0.2% 3.88e+04 0.2% 3.86e+04 0.2% 3.80e+04 0.2%	2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 1.46e+07 63.2% 1.33e+07 57.4% 1.31e+07 56.6% 7.70e+06 33.2% 3.83e+06 16.5% 3.24e+06 14.0% 4.02e+05 1.7% 1.45e+06 6.3% 6.30e+04 0.3% 5.94e+04 0.2% 4.73e+04 0.2% 4.32e+04 0.2%	3.04e+07 100 % 1.58e+07 51.9% 1.43e+07 47.1% 1.40e+07 46.2% 8.36e+06 27.5% 4.30e+06 14.1% 3.67e+06 12.1%
 ▼loop at lulesh.cc: 3231 ▼ ➡ 3225: LagrangeLeapFrog(Doma ▼ ➡ 3048: LagrangeNodal(Domai ▼ ➡ 1570: CalcForceForNodes ▼ ➡ 1397: CalcVolumeForce ▼ ➡ 1353: CalcHourglas: ▼ ➡ 1279: CalcFBHou ▼ ➡ 904: <unknow< li=""> ▶ _omp_offlo ▼ ➡ _s_omp_out Lulesh.cc: 96 Lulesh.cc: 97 Lulesh.cc: 97 Lulesh.cc: 97 Lulesh.cc: 97 Lulesh.cc: 97 </unknow<>	ain&) in&) s(Domain&) seForElems(Domain&, double*, double) urglassForceForElems(Domain&, double*, double*, d urglassForceForElems(Domain&, double*, double*, d on procedure> bading_35_3a52475_ZL28CalcFBHourglassForceFort tlined_\$_debug\$_5 D6 58 75 54 79 70 91	7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 7.45e+07 100 % 4.13e+07 55.5% 3.71e+07 49.8% 3.64e+07 48.8% 2.16e+07 29.0% 1.13e+07 15.2% 9.53e+06 12.8% 2.91e+06 3.9% 2.82e+06 3.8% 1.30e+05 0.2% 1.02e+05 0.1% 9.41e+04 0.1% 8.97e+04 0.1%	1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 1.68e+07 100 % 8.51e+06 50.8% 7.70e+06 45.9% 7.55e+06 45.0% 4.64e+06 27.7% 2.66e+06 15.9% 2.24e+06 13.4% 3.79e+04 0.2% 1.23e+06 7.4% 5.48e+04 0.3% 3.88e+04 0.2% 3.86e+04 0.2% 3.86e+04 0.2%	2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 2.32e+07 100 % 1.46e+07 63.2% 1.33e+07 57.4% 1.31e+07 56.6% 7.70e+06 33.2% 3.83e+06 16.5% 3.24e+06 14.0% 4.02e+05 1.7% 1.45e+06 6.3% 6.30e+04 0.3% 5.94e+04 0.2% 4.73e+04 0.2%	3.04e+07 100 % 3.04e+07 100 % 3.04e+07 100 % 3.04e+07 100 % 3.04e+07 100 % 1.58e+07 51.9% 1.43e+07 47.1%

Code-Centric Attribution for CUDA

$\bullet \bullet \bullet$				hpcviewer: raja-perf-nolibs.exe	
🞅 DOT.cpp	launcher.h ⊠	🞅 reduce.h	🞅 cupti-api.c		
97 void _ 98 _kerne 99 { 100 exte	5,	nds(Agent::p _2 x2, _3 x3, _ em[];	tx_plan::BLOCK_TH _4 x4, _5 x5)	_3, class _4, class _5> READS, Agent::ptx_plan::MIN_BLOCKS)	0
102 } 103 templo 104 void	ate <class agent,="" class<="" td=""><td>_0, class _1, nds(Agent::p</td><td>class _2, class _ tx_plan::BLOCK_TH</td><td>_3, class _4, class _5, class _6> READS, Agent::ptx_plan::MIN_BLOCKS) x6)</td><td></td></class>	_0, class _1, nds(Agent::p	class _2, class _ tx_plan::BLOCK_TH	_3, class _4, class _5, class _6> READS, Agent::ptx_plan::MIN_BLOCKS) x6)	
褖 Calling Cont	ext View 🛛 🔧 Callers Vi	ew 拝 Flat View	,		

ope	STL_NONE.[0,0] (I) ~	STL_NONE.[0,0] (E)	STL_MEM_DEP.[0,0] (STL_MEM_DEP.[0,0] (I	STL_S
Experiment Aggregate Metrics	1.19e+08 100 %	1.19e+08 100 %	1.08e+09 100 %	1.08e+09 100 %	1.9
<program root=""></program>	1.19e+08 100 %		1.08e+09 100 %		1.9
▼ 🛱 500: main	1.19e+08 100 %		1.08e+09 100 %		1.9
▼ 🖶 34: rajaperf::Executor::runSuite()	1.19e+08 100 %		1.08e+09 100 %		1.9
🔻 🖶 372: rajaperf::KernelBase::execute(rajaperf::VariantID)	1.19e+08 100 %		1.08e+09 100 %		1.9
🔻 🖶 72: rajaperf::stream::DOT::runKernel(rajaperf::VariantID)	5.29e+07 44.5%		2.20e+08 20.4%		1.5
🔻 🖶 165: rajaperf::stream::DOT::runCudaVariant(rajaperf::VariantID)	3.34e+07 28.1%		5.48e+07 5.1%		1.2
I111: double thrust::inner_product <thrust::detail::normal_iterator<thrust::device_ptr<double>></thrust::detail::normal_iterator<thrust::device_ptr<double>	3.34e+07 28.1%		5.48e+07 5.1%		1.2
🔻 🖶 84: double thrust::inner_product <thrust::cuda_cub::tag, td="" thrust::detail::normal_iterator<thrusi<=""><td>3.34e+07 28.1%</td><td></td><td>5.48e+07 5.1%</td><td></td><td>1.3</td></thrust::cuda_cub::tag,>	3.34e+07 28.1%		5.48e+07 5.1%		1.3
🔻 🖶 46: double thrust::cuda_cub::inner_product <thrust::cuda_cub::tag, td="" thrust::detail::normal_i<=""><td>t 3.34e+07 28.1%</td><td></td><td>5.48e+07 5.1%</td><td></td><td>1.3</td></thrust::cuda_cub::tag,>	t 3.34e+07 28.1%		5.48e+07 5.1%		1.3
🔻 🖶 81: double thrust::cuda_cub::inner_product <thrust::cuda_cub::tag, td="" thrust::detail::norma<=""><td>3.34e+07 28.1%</td><td></td><td>5.48e+07 5.1%</td><td></td><td>1.</td></thrust::cuda_cub::tag,>	3.34e+07 28.1%		5.48e+07 5.1%		1.
🔻 🖶 63: doit_step <thrust::cuda_cub::transform_pair_of_input_iterators_t<double, td="" thrust::<=""><td>3.34e+07 28.1%</td><td></td><td>5.48e+07 5.1%</td><td></td><td>1.</td></thrust::cuda_cub::transform_pair_of_input_iterators_t<double,>	3.34e+07 28.1%		5.48e+07 5.1%		1.
🔻 🖶 821: void thrust::cuda_cub::core::AgentLauncher <thrust::cuda_cub::reduce::re< td=""><td>3.30e+07 27.7%</td><td></td><td>5.38e+07 5.0%</td><td></td><td>1.</td></thrust::cuda_cub::reduce::re<>	3.30e+07 27.7%		5.38e+07 5.0%		1.
🔻 🖶 1105: doit <void (*)="" (thrust::cuda_cub::transform_pair_of_input_iterators_t<doul<="" td=""><td>3.30e+07 27.7%</td><td></td><td>5.38e+07 5.0%</td><td></td><td>1.</td></void>	3.30e+07 27.7%		5.38e+07 5.0%		1.
🔻 🖶 892: cudaError thrust::cuda_cub::launcher::triple_chevron::doit_host <void (<="" td=""><td>* 3.30e+07 27.7%</td><td></td><td>5.38e+07 5.0%</td><td></td><td>1.</td></void>	* 3.30e+07 27.7%		5.38e+07 5.0%		1.
I06: void thrust::cuda_cub::core::_kernel_agent <thrust::cuda_cub::red< p=""></thrust::cuda_cub::red<>	3.30e+07 27.7%		5.38e+07 5.0%		1.
▼ 🖶 321: void thrust::cuda_cub::core::_wrapper_device_stub_kernel_age	a.30e+07 27.7%		5.38e+07 5.0%		1.
🔻 💕 64:device_stubZN6thrust8cuda_cub4core13_kernel_agentINS	3.30e+07 27.7%		5.38e+07 5.0%		1.
▼ 💕 60: cudaError cudaLaunch <char>(char*)</char>	3.30e+07 27.7%		5.38e+07 5.0%		1.
B) 1879: cudaLaunch	3.30e+07 27.7%		5.38e+07 5.0%		1.
Epiceptical State Sta	3.30e+07 27.7%		5.38e+07 5.0%		1.
▼ 🖶 301: thrust::cuda_cub::core::_kernel_agent <thrust::cuda< td=""><td>8.92e+06 7.5%</td><td>6.87e+05 0.6%</td><td>2.89e+07 2.7%</td><td>7.17e+05 0.1%</td><td></td></thrust::cuda<>	8.92e+06 7.5%	6.87e+05 0.6%	2.89e+07 2.7%	7.17e+05 0.1%	
▼ 🖶 101: [i] thrust::cuda_cub::reduce::ReduceAgent <th< td=""><td>N 8.23e+06 6.9%</td><td>2.96e+05 0.2%</td><td>2.82e+07 2.6%</td><td>1.11e+06 0.1%</td><td></td></th<>	N 8.23e+06 6.9%	2.96e+05 0.2%	2.82e+07 2.6%	1.11e+06 0.1%	

Unexpected Challenges - I

- Challenge: extra threads
 - CUDA helper thread
 - CUPTI helper threads
 - CUPTI spawns a pthread every time it launches a kernel coordinate measurement of asynchronous operations?
- Approach
 - modify HPCToolkit's libmonitor to record return address associated with pthread_create call
 - ignore a thread spawned by any of NVIDIA's libraries
 - recognize libraries by an API function they supply rather than by name

Unexpected Challenges - II

- Large overhead for PC Sampling with CUPTI
- Assessing the situation
 - Test case: LLNL's rajaperfsuite
 - uses RAJA portability layer to offload kernels to a GPU
 - Observe overhead for turning on the CUPTI Activity API to measure GPU performance using PC Sampling

CUPTI User Space Overhead for PC Sampling

 memset added to CUDA launch to support PC Sampling with CUPTI accounts for 28% of total execution time

	hpcviewer: raja-perf-nolibs.exe	
MULADDSUB-Cuda.cpp 🛛		- [
<pre>58 deallocCudaDeviceData(in2); 59 60global void muladdsub(Real_ptr out)</pre>	, Real_ptr in2, end)	
<pre>65 if (i < iend) { 66 MULADDSUB_BODY; 67 } 68 } 69 70</pre>		
<pre>71 void MULADDSUB::runCudaVariant(Variant 72 { 73 const Index_type run_reps = getRunRe 74 const Index type ibegin = 0.</pre>		
😪 Calling Context View 🔕 Callers View 🛱 👬	-lat View	
1 🕂 🗄 🕼 🕅 📰 🗚 🛌		
Scope		cycles:Sum (I) 🛛 cycles:Sum (E) 🗸
Experiment Aggregate Metrics		1.90e+12 100 % 1.90e+12 100 %
memset_sse2		5.47e+11 28.8% 5.44e+11 28.6%
🔻 📹 <unknown procedure=""> 0x2dd91e [libcuda</unknown>	so.384.81]	5.47e+11 28.8% 5.44e+11 28.6%
🔻 🗐 zunknown procedures 0x2ea220 [libci	da so 384 811	5 47e+11 28 88 5 44e+11 28 68

▼ 📹 <unknown procedure=""> 0x2dd91e [libcuda.so.384.81]</unknown>	5.47e+11 28.8%	5.44e+11 28.6%
🔻 🐖 <unknown procedure=""> 0x2ea220 [libcuda.so.384.81]</unknown>	5.47e+11 28.8%	5.44e+11 28.6%
🔻 <u <ul=""> <u <li="" <u="">unknown procedure> 0x32af82 [libcuda.so.384.81]</u> </u>	5.47e+11 28.8%	5.44e+11 28.6%
🔻 < unknown procedure> 0x186f90 [libcupti.so.9.0.176]	5.47e+11 28.8%	5.44e+11 28.6%
▼ 📹 <unknown procedure=""> 0x171e69 [libcupti.so.9.0.176]</unknown>	5.47e+11 28.8%	5.44e+11 28.6%
«	5.47e+11 28.8%	5.44e+11 28.6%
🔻 🔚 <unknown procedure=""> 0x1cb788 [libcuda.so.384.81]</unknown>	5.47e+11 28.8%	5.44e+11 28.6%
Ibcuda.so.384.81	5.47e+11 28.8%	5.44e+11 28.6%
▼ 4 <unknown procedure=""> 0xe4ab5 [libcuda.so.384.81]</unknown>	5.47e+11 28.8%	5.44e+11 28.6%
▼ 4 <unknown procedure=""> 0xe4ce2 [libcuda.so.384.81]</unknown>	5.47e+11 28.8%	5.44e+11 28.6%
Ilibcuda.so.384.81	5.47e+11 28.8%	5.44e+11 28.6%
🔻 🐗 cudart::cudaApiLaunchCommon	5.47e+11 28.8%	5.44e+11 28.6%
v 🗐 cudaLaunch	5.47e+11 28.8%	5.44e+11 28.6%
▼ ا 1879: cudaLaunch <char></char>	5.47e+11 28.8%	5.44e+11 28.6%
417:device_stub_ZN4RAJA6policy4cuda4impl18forall_cuda_kernellLm256ENS_9Iterators16numeric_iteratorllIPIEE	2.74e+11 14.4%	2.73e+11 14.4%
device_stub_ZN8rajaperf5basic9muladdsubEPdS1_S1_S1_S1_I	2.72e+11 14.3%	2.71e+11 14.3%
▶ 🔁 63: rajaperf::basic::muladdsub	2.72e+11 14.3%	2.71e+11 14.3%

CUPTI Kernel Overhead for PC Sampling

• nv_alloc_system_pages added to CUDA launch to support PC Sampling with CUPTI accounts for 42% of total execution time

MULADDSUB-Cuda.cpp ☆ deallocCudaDeviceData(in2); generations and the set of the set o	
<pre>59 60global void muladdsub(Real_ptr out1, Real_ptr out2, Real_ptr out3, 61</pre>	
62 Index_type iend) 63 <mark>{</mark>	
Index type i = blockIdx x * blockDim x + threadIdx x:	
<pre>index_type i = biocklux.x = biockbtm.x + chreadiux.x, if (i < iend) { MULADDSUB_BODY; } 58 } 59</pre>	
Calling Context View 🗞 Callers View 🕱 🏗 Flat View	
1 🕂 🗄 😥 🕅 💹 At 🛌	
	(I) cvcles:Sum (E) ~
	.1% 2.32e+11 12.2%
	.1% 2.32e+11 12.2
	.1% 2.32e+11 12.2
	.1% 2.32e+11 12.2%
	.1% 2.32e+11 12.2
	.1% 2.32e+11 12.2
	.1% 2.32e+11 12.2
	.1% 2.32e+11 12.2 .1% 2.32e+11 12.2
	.1% 2.32e+11 12.2
	.1% 2.32e+11 12.2
	.1% 2.32e+11 12.2
	.1% 2.32e+11 12.2
	.1% 2.32e+11 12.2
	.1% 2.32e+11 12.2
	.1% 2.32e+11 12.2
	.1% 2.32e+11 12.2
	.1% 2.32e+11 12.2
	.1% 2.32e+11 12.2
	.1% 2.32e+11 12.2
	.1% 2.32e+11 12.2
	.0% 1.16e+11 6.1
	.0% 1.16e+11 6.1
I 17:device_stub_ZN4RAJA6policy4cuda4impl18forall_cuda_kernellLm256ENS_9lterators16num 4.00e+11 21	

16

CUPTI Kernel Overhead for PC Sampling

cycles:Sum (I)	
cycles:Sum (I)	
cvcles:Sum (I) v	
	cycles:Sum (E)
1.89e+12 99.5%	
1.89e+12 99.5%	
1.89e+12 99.3%	
1.89e+12 99.3%	
1.89e+12 99.3%	6.03e+09 0.
1.86e+12 98.0%	
.6% 1.60e+09	0.19
.0% 1.16e+11	6.19
.5% 9.14e+08	0.01
.4% 1.95e+09	0.19
.2% 3.29e+09	0.29
.1% 2.12e+11	11.19
.7% 2.33e+10	
15 Z. 330TIU	
p	1.89e+12 99.3% 1.89e+12 99.3% 1.89e+12 99.3% 1.89e+12 99.3% 1.89e+12 99.3% 1.89e+12 99.3% 1.89e+12 99.3% 1.86e+12 98.0% 9.39e+11 49.4% 9.39e+11 49.4% per_t<_nv_d 9.39e+11 49.4% per_t<_nv_d 9.39e+11 49.4% 0% 1.16e+111 .5% 9.14e+08 .4% 1.95e+09 .2% 3.29e+09 .1% 2.12e+111 .1% 2.12e+111

mv_alloc_pages [nvidia]	4.11e+11 21.6% 1.60e+09 0.1%
multiplestim mu	4.00e+11 21.0% 1.16e+11 6.1%
Jet_free_pages	2.75e+11 14.5% 9.14e+08 0.0%
alloc_pages_current	2.73e+11 14.4% 1.95e+09 0.1%
Image: Contemporary Contempo	2.70e+11 14.2% 3.29e+09 0.2%
Elear_page_c_e	2.12e+11 11.1% 2.12e+11 11.1%
<unknown file=""> [<vmlinux>]: 0</vmlinux></unknown>	2.12e+11 11.1% 2.12e+11 11.1%
get_page_from_freelist	5.16e+10 2.7% 2.33e+10 1.2%
<unknown file=""> [<vmlinux>1: 0</vmlinux></unknown>	3.29e+09 0.2% 3.29e+09 0.2%

Remaining Work: HPCToolkit

• hpcrun

- upgrade OMPT support from TR4 to OpenMP 5 standard
 - asynchronous assembly of calling contexts mediated by wait-free operations on data structures
- integrate GPU support to allow both CUDA and OpenMP 5 in the same execution
- add support for sample-based tracing of GPU activity
- complete support for sparse metric sets
 - many GPU metrics
 - few nodes in CCT have GPU metrics
 - goal: avoid space cost of empty GPU metrics almost everywhere
- test support for OpenACC
- hpcstruct
 - integrate support for parsing dot CFGs for NVIDIA CUBINs
 - enable us to attribute GPU kernel performance at the loop level
 - compute approximate call tree on GPUs
 - when there is a single call to a function, know its calling context
 - when there are multiple calls, proportionally attribute cost to callers
- hpcviewer
 - needs top-down support for analyzing GPU metrics
- hpctraceviewer
 - needs support for displaying traces of GPU kernel executions

Remaining Work: libomptarget

- Refine OMPT support for use of libomptarget without OpenMP
- Upstream changes to libomptarget
- Hand off OMPT GPU support to IBM for direct integration into LOMP

Unmet Needs from NVIDIA

- API for unpacking .nv_fatbin segments
 - NVIDIA has refused to provide header file or API
 - complicates binary analysis of heterogeneous binaries constructed with NVIDIA nvcc
 - CUDA and OpenACC
- API for computing control flow graphs for CUBINs — currently, execute nvdisasm and parse its output
- CUPTI Activity API for PC sampling has significant overhead
 - long time spent initializing memory (profile buffers?) in both user space and the kernel when PC sampling is enabled

NVIDIA has committed to working on this one for Volta