
1

DECAN: Differential Analysis for fine
level performance evaluation.

Current contributors: E. Oseret (ECR), M. Tribalat (ECR), C. Valensi (ECR),
W. Jalby (ECR/UVSQ)

Former DECAN contributors: Z. Bendifallah (ATOS), J.-T. Acquaviva (DDN),

T. Moseley (Google), S. Koliai (Celoxica), J. Noudohouenou (INTEL),

2

OUTLINE

• Application developer point of view
• DECAN: principles
• A motivating example
• DECAN: general organization
• Conclusions

3

• First, a larger number of ever more complex hardware
mechanisms (more FU, more caches, more vectors etc …) are
present in modern architectures
 Each of these mechanisms might be a potential performance

bottleneck!!

• To get top performance all of these mechanisms have to be fully

exploited

• Code optimization has become a very complex task:

 Checking all of these potential sources of performance losses (poor
exploitation of a given resource: performance pathologies)

 Checking potential dependences between performance issues
 Resolving chicken and egg problem: program run out of physical

register files due to long latency operations such as divide
 Building pathology hierarchy: what are the most important issues which

have to be worked first….

 Application developer problems (1)

4

Classical technique of working first on the loop with the highest
coverage (contribution) is not a valid strategy:
• Importance of ROI (Return On Investment)

 Routine A consumes 40% of execution time and performance gains are
estimated on routine A at 10%: overall gain 4%

 Routine B consumes 20% of execution time and performance gains are
estimated on routine B at 50%: overall gain 10%

WORK FIRST ON B (NOT A) BUT REQUIRES EVALUATING ACCURATELY
PERFORMANCE GAINS:
• Knowing number of cache misses is not enough
• Knowing cache miss latency is not enough either…
• We need to know performance impact of a cache miss: much more

subtle notion and how to measure it…. In fact, you would like to be able
to “suppress” cache misses and measure performance..

• Evaluation of “What if” scenarios. Most of the current analysis
techniques measure what happens, never what could have happened if
…

 Application developer problems (2)

5

The main knobs that an application developer can use for tuning are:
 Modify source code
 Write in assembly

 Insert directives
 Use compiler flags

To use most of these knobs, very good correlation has to be established
between performance problems and source code, ultimately at the source
line level.

In addition to the previous info on cache misses, we also need to
know what array(s) access are generating these misses….

How to get all of that info ??
Main goal of DECAN and differential analysis

 Application developer problems (3)

6

• Be a physicist:
 Consider the machine as a black box
 Send signals in: code fragments
 Observe/measure signals out: time and maybe other metrics

• Signals in/Signals out
 Slightly modify incoming signals and observe differences/variations

in signals out

 Tight control on incoming signal

• In coming signal: code
 Modify source code: easy but dangerous: the compiler is in the

way
 Modify assembly/binary: much finer control but more complex and

care about correlation with source code

DECAN Principles (1)

7

• GOAL 1: detect the offending/delinquent
operations

• GOAL 2: get an idea of potential performance
gain

DECAN Principles (2)

8

DECAN’s concept is simple:

 Measure the original binary

 Patch the target instruction(s) in the original binary

 New binaries are generated for each patch

 Measure new binaries

 Compare measurements and evaluate instruction cost
differentially

CLEAR NEED: manipulate/transform/patch binaries

DECAN Principles (3)

9

DECAN generates binary variants according to predefined templates/rules

•FP: all of the SSE/AVX instructions containing Load/Stores are
removed

•LS: all of the SSE/AVX instructions containing FP arithmetic are
removed

Codelet contains:
Memory Inst.
Arithm Inst.
Branch Inst.

Version without
Load Store Inst.

Version without
FP Arithm Inst.

Results: is the
loop FP Arith

bound or data
access

bound??

DECAN: SIMPLE VARIANTS (1)

10

 FP LS

 Ref

DECAN: SIMPLE VARIANTS (2)

11

Motivation: Source code and issues

11

6) Vector vs scalar

2) Non-unit stride accesses

4) DIV/SQRT

5) Reductions

Special issues:

Low trip count: from 2 to

2186 at binary level

3) Indirect accesses

Can I detect all these issues with current tools ?
Can I know potential speedup by optimizing them ?

1) High number of

 statements

12

Motivation: POLARIS(MD) Loop

12

Example of multi scale problem:
Factor Xa, involved in thrombosis

Anti-Coagulant

(7.46 nm)3

13

TARGET HARDWARE: SNB

 Best Estimated: CQA (static Code Quality Analyzer) results

 REF: Original code

 FP: only FP operations are kept

 LS only Load Store instructions are kept.

 FP / LS = 4,1: FP is by far the major bottleneck: Work on FP

 CQA indicates DIV/SQRT major contributor. Let us try to vectorize

DIV/SQRT

0

5

10

15

20

25

30

35

40

45

50

Best_estimated REF FP LS

C
yc

le
s

p
e

r
so

u
rc

e
 it

e
ra

ti
o

n

Variants

Execution time

Execution time

Lower is better

Original Code: Dynamic properties

14

 FP / LS = 4,1 2,07

 REF: 45 25

 FP: 44 22

 LS: 10 10

0

5

10

15

20

25

30

35

40

45

50

Best_estimated REF FP LS

C
yc

le
s

p
e

r
so

u
rc

e
 it

e
ra

ti
o

n
s

Variants

Execution time

Execution time

Lower is better

Vectorized Code: properties update

Forced vectorization using SIMD directive.

15

Case study: one step further

REF_NSD : removing DIV/SQRT instructions provides a 1.5 x speedup

 => the bottleneck is the presence of these DIV/SQRT instructions

FPLS_NSD : removing loads/stores after DIV/SQRT provides a small additional speedup

Conclusion: No room left for improvement here (algorithm bound)

DIV/SQRT

instructions

removed

Loads/stores +

DIV/SQRT instructions

removed

0

5

10

15

20

25

30

35

40

45

50

Best_estimated REF FP LS REF_NSD FPIS_NSD

C
yc

le
s

p
e

r
so

u
rc

e
 it

e
ra

ti
o

n
s

Variants

Execution time

Execution time

16

• Load & Store

• Load

• Store

• Adress Comput

• Control Flow

• FP arithmetic

• Division

• Reduction

• ……

Examples of

instruction subsets

Identify target instruction

subsets

Construct

transformations requests
Inject monitoring probes

• Deletion

• Replacement

• Modification

Examples of

transformations

• Time

• PMU events

Observed events

Loop Variant creation

Transformations done independently on every

instruction in the subset.

Control flow instructions are blacklisted and

never affected by transformations

17

DECAN variant execution will provide incorrect results. DECAN variants
are inserted in the binary using the following process.

• Context Save
• Start RDTSC (or other probe)
• DECAN Variant (FP, LS, etc…) execution
• Stop RDTSC (or other probe)
• Restore context
• Original loop execution
• Resume regular program execution

 How to use DECAN while preserving semantics

18

 Comparing LS and FP measurements allows to detect whether
• The loop is data access bound then work has to be done on data

access
• The loop is FP bound then work on vectorization, removing long

latency instructions etc ...
• DECAN has provided us a clear performance estimate gain.

 We need to go further and start working on individual instructions or
better groups of instructions:

• Suppress all loads
• Suppress all stores

REMARK: suppressing a single instruction can be hard to interpret.

DECAN: Coarse Performance Analysis

19

DECAN can be used for unicore code but also for parallel
constructs:

 Data parallel, DOALL OpenMP loops can be DECANNed: all of the
threads will execute the same modified binary load/store instructions
corresponding to G are suppressed

 Same technique can be used for MPI code although care has to be
taken on the core use of the memory.

 Issue: analyzing results with a large number of threads.

DECAN: Parallelism

20

Original ASM

Loop:

vmovupd (%rdx,%r15,8), %ymm4

vmovupd (%rdx,%r15,8), %ymm5

vaddpd %ymm4, %ymm5, %ymm6

vmovupd %ymm6, (%rax,%r15,8)

add $4, %r15

cmp %r15, %r12

jb Loop

Mem1, 2, 3 standard memory
address, in general moving
across address space

Modified ASM: DL1

Loop:

vmovupd a(%rip), %ymm4

vmovupd a(%rip), %ymm5

vaddpd %ymm4, %ymm5, %ymm6

vmovupd %ymm6, a(%rip)

add $4, %r15

cmp %r15, %r12

jb Loop

RIP Based address invariant
across iterations: initial L1
miss than on subsequent
iterations L1 hits

Impact of Operand Location: Emulating Perfect L1

21

ONE VIEW R.O.I. DL1

Results showing the potential speedup if all data was in L1 cache for the YALES

2 application (3D Cylinder model)

Loops ordered by coverage.

22

How to use DECAN in a systematic manner

 Use various tools (sampling, tracing, static analysis)

– CQA for analyzing code quality

– Sampling to estimate loop coverage

– Value profiling (tracing) to get loop iteration count

 Integrate DECAN variants in a decision tree similar to the

Top Down Approach proposed by Yasin et al

 PAMDA: Performance Analysis Methodology using

Differential Analysis

23

 DECAN is complex: side effects have to be analyzed
with care in particular when using new variants

 Dependent upon code generated/compiler: loops with
multiple entry points ??

 DECAN is a microscope: applicable to loops only

 Needs to be coupled with good profiling

 Measurement accuracy
 Let us think of a loop with 100 groups (each of them accessing a

different array): suppressing one group might be equivalent to
suppress 1% work, hard to detect.

 Some experiments in the DECAN series can crash: for example NOP

the access to indirection vectors

DECAN limitations

24

 DECAN is a powerful tool for
• Detecting performance bottlenecks
• Evaluating performance potential gains
• Providing correlation between source code and performance

issues

 DECAN only needs a precise timer even for analysing memory

behavior.

 DECAN integrated with ONE VIEW tool set used by CEA DAM, CEA

Life Science (POLARIS MD), CERFACS (AVBP), Dassault
Aerospace, INTEL ECR, …

 DECAN is Open Source (LGPL 3.0)

DECAN Conclusion

25

BACKUP SLIDES

26

Dealing with If within loop bodies

 Typical case: if (A(I)) > 0) THEN (BBBBB) ELSE (CCCC)
 First analysis: preserve loop control and apply transformations on

(BBBBBB) and (CCCCC)
 Second analysis: Suppressing access to A(I) is equivalent to NOPping

the branch. Can be used to analyze cost of mispredicts

 DECAN provides info but care has to be taken

DECAN: Dealing with Branches

27

Arithmetic operations are deleted

LS variant

• Memory operations are deleted

FP variant

• CPU and memory sub-system behavior highlighted independently

Effect

LS/FP Variants

28

Tools: CQA

CQA = Code Quality Analyzer
Objectives (provides):

 Statically analyzes innermost loops binaries: builds DDG

 Best performance estimation (assuming data in L1 and using
microbenchmarks for FU latencies/bandwidths)

 Code quality information (and optimization hints for compiler flags
and source transformations)

 First estimation of bottlenecks hierarchy

 Provides metrics and reports at both low and high abstraction
levels

 Supports Intel 64 micro-architectures from Core 2 to Coffee Lake

28

29

Side Effects to Monitor (1)

Side effect Workarounds

Code layout change
Replace deleted instructions

with NOPs

Data dependency
Kill extra dependencies

introduced

Variable latency

instructions

Control latency by loading the

operands

Floating point

exceptions

Deactivate software exception

handling

Different floating behavior
Load special values from

stack

30

Suppressing load store instructions can introduce extra (unwanted) dependencies:

ADDPD (%rsi), xmm1
MOVAPS xmm1, 16(%rsi)
MOVAPS (%eax), xmm1
ADDPD xmm2, xmm1

Is transformed into (adding PXOR allows to break dependencies):

ADDPD (%rsi), xmm1
XORPS xmm1, xmm1

ADDPD xmm2, xmm1

Side Effects to monitor (2)

31

Coherency Impact Analysis

Transform every store operation into a load operation with same target

adress

S2L variant

Disables all the cache effects caused by stores (coherency

issues)

Effect

32

 Seismic migration
– Uses the Reverse Time Migration

 Developed by TOTAL (French oil company)

 Fortran, OMP, MPI, OMP+MPI

 Interior of the domain

(inner)

Borders of the domain

(damping)

Form of

the

Stencil

RTM code (1)

33

Preliminary performance studies:

• Good load balance: equitable work sharing in the stencil

• Good locality: The chosen blocking strategy provides a
reasonable gap between the LS and FP streams. The
application is still memory bound

Due to OpenMP parallelization strategy (subdomain
decomposition), many elements are written by cores then
read by other cores. Potential data coherence traffic issue.

Use S2L DECAN variant!!

RTM code : OpenMP study

34

RTM application (Cache coherence)

Conclusion: Performance are the same => Cache line state change is well
managed by the coherency mechanism

 4 cores Sandy-Bridge

35

Decremental Analysis: a first example

A measurement technique based on binary program

modification

Modified binary is wrong: produces erroneous results

36

ONE VIEW R.O.I. DL1

Results showing the potential speedup if all data was in L1 cache for the YALES

2 application (3D Cylinder model)

Loops ordered by coverage.

37

PAMDA: Global Decision Tree

38

PAMDA: LS Sub Tree

39

Methodology (sanity tree)

39

40

Methodology (main tree)

41

Methodology (CPU bound tree)

42

Methodology (memory bound tree)

43

Methodology (OpenMP tree)

43

