
(1) Communication graphs
(2) Tools that offload to GPUs

Discussion during the tools meeting
Ask for edit permission by clicking

http://tinyurl.com/Solitude18GaneshBreakout

1

Communication Graphs (summary of discussions)
Participants: Phil Roth, Kevin Huck, Felix Wolf, David P, Ganesh G;

Ask for edit/view permission: http://tinyurl.com/Solitude18GaneshBreakout

● Generalize notion of communication matrices and graphs
○ Include things like ranks, communicators, logical/physical topologies -- even cabinets etc

● Find not only when current pattern sustains -- record transitions to new / non patterns
○ Sometimes it may degenerate to a known hairball -- e.g. embedded FFT pattern

● Train machine-learning models to recognize patterns
○ Recognize primary pattern at current level of detail
○ Do “sky subtraction” and then go after patterns at the next level of detail

● Training machine-learning models needs labeled data
○ Parametrically generate several communication models to serve as labeled data
○ For instance, point-to-point comm can be thrown in; introduce controlled randomness

● Recording with edge-weights can serve the needs of perf (comm volume)
● Correctness (relative debugging) can find what changed in comm graph
● Elastic MPI : new challenges that would be good to discuss (Michael Gerndt)

○ Patterns may change 2

Debugging tools that offload to GPUs (disc. summ.)
Participants: John M-C, Ben Woodward, Ganesh G, a couple of beers

Ask for edit/view permission: tinyurl.com/CommunicationGraphsSolitudeWorkshop18

● Discussed expedient path to tracking GPU synchronization
● Ben brought up PTX-based instrumentation as a way to proceed
● Decided that PTX-based instrumentation and barrier inference may be a smart way to get some

things done
● Ganesh has some concerns this will do for the long-haul (see next slide)
● John sent some literature to get barrier inference done

○ DOI=http://dx.doi.org/10.1145/209936.209952

○ http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.8519&rep=rep1&type=pdf

○ DOI=http://dx.doi.org/10.1007/978-3-540-69330-7_13

○ http://titanium.cs.berkeley.edu/papers/kamil-yelick-lcpc05.pdf
○ http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.1283&rep=rep1&type=pdf

3

http://dx.doi.org/10.1145/209936.209952
http://dx.doi.org/10.1007/978-3-540-69330-7_13
http://titanium.cs.berkeley.edu/papers/kamil-yelick-lcpc05.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.1283&rep=rep1&type=pdf

Why it may not work for the long-haul
● barrier inference can help but alone does not cut it
● - inter-block races
● - races in codes that combine barriers and GPU atomics
● - races avoided by fences in various scopes
● - "porting races" (conditionals unordered in evaluation)
● - usage of the right warp reconvergence primitives OK?
● * infer behavior around "shuffles" (any)?
● * the sync primitive used in Alex Aiken's chemistry codes
● (like a named barrier)
● * New warp-level primitives
● __activemask and __syncwarp
● * Opportunistic warp-sync programming
● - implicit warp-sync programming is dangerous

○ Detect such bugs too
● Existing GPU verification tools (partial list)

○ GKLEE (PPoPP’12, SC’15), GPUVerify (Donaldson), CURD (Devietti)
4

DISCUSSION ROUGH NOTES

5

Discussions

● FW: Shared mem accesses (patterns in)
● PR: Demand not just for MPI but also comm across other APIs (accelerators)
● KH: Data exchange to (between) libraries

■ ADIOS, Data Spaces, SST
● DP: Interested in using it for applications where ranks have diff characteristics

■ KH, PR: Coordinates for ranks (cabinet, 2D/3D pat),,Hypercube, GPU offload in-between
■ PR,KH: Patterns around diagonal; Distill things like nearest-neighbor exchange
■ DP: Found patterns till m,n; failed patterns at p,q; Could it be sub-communicators?
■ KH,PR: need to track comm creation

○ Languages for pattern description
■ FW: # comm partners, amt of data exchanged. Mine locality info.
■ PR: Clustering procs based on metrics?

○ PR: for debugging: ScalaTrace: Scalable compression and replay of communication traces for
high-performance computing (Muller’s direction of work)

○ FW: have done it for task graphs (Umps framework?). Can get metrics (work/depth)
○ DP: rank-based semantics would be good to mine.

■ Relative values of communication volume, bytes exchanged etc.
○ GG: Concept lattices may be a good way to summarize rank-specific features. Here is a use of CLs

in the perf space: Structural Clustering: A New Approach to Support Performance Analysis at Scale
○

6

Discussions

● PR: Can we include more info like taint info.
● KH: MPI with threads
● PR: Karen has done work on comparing results from run1 to run0 in terms of perf
● KH: Solver “nondeterminism” in terms of how convergence happens. FFT suddenly engages in a different pattern.

● KH: May want to ignore “hairballs” that pop up in the middle
● PR: mine phases and then say what’s of interest (or not)
● KH: capture data wrt communicators gives us handle on ignoring things efficiently
● KH: Patterns may be generated perhaps using ML-techniques
● DP: Proving one is wrong wrt pattern mining within small instances may be efficient
● PR, KH: Greedy attribution (automation) may be error-prone, but ML may help pick out those “human

recognizable patterns”. This is after “sky subtraction” is done.
● FW: Need enough training data.

○ One can focus on pt-to-pt and then focus on collective calls
○ DP: some info on geometry is available. Logical/Physical layout
○ GG: contain pattern-space to what’s feasible
○ PR: maybe fold in FW’s shared memory info
○ Graph-generation for benchmarking graph-analysis tools/algos is in this IPDPS’18 paper

■ Communication-free Massively Distributed Graph Generation
○ 7

Discussions

● DP: graph-generation may be useful in generating training data for ML tools (tagged/labeled data)
● KH: We are interested in some principal patterns; can we parametrically fill in noisy (biased) nearest-neighbor?
● PR: LAMMS situation where generating test cases..
● KH,PR: Data volume and calls.
● PR, FW: Scalasca - late-sender [https://dl.acm.org/citation.cfm?doid=2974644.2934661]
● KH: logical/actual time diff is where problems are
● PW,GG: This is how patterns were used in “industrial-scale cache coherence verification”

○ http://www.cs.cmu.edu/~tmurali/pubs/fmcad09.pdf
● DP: might we want to put something through multiple learning sequences for patterns?
● KH: probabilistic match for what pattern did we end up matching
● PR, GG:

8

http://www.cs.cmu.edu/~tmurali/pubs/fmcad09.pdf

Pre-discussion slides (Blame-shifting to Ganesh)

9

Community interest in debugging
● DOE report :

http://tinyurl.com/DOE-HPC-Correctness-2017-pdf

● HPCWire article

http://tinyurl.com/DOE-HPCWire-Correctness-2017-pdf

10

http://tinyurl.com/DOE-HPC-Correctness-2017-pdf
http://tinyurl.com/DOE-HPCWire-Correctness-2017-pdf

Gist
● No way to diagnose a large-scale crash/hang other than

○ Attach tools such as STAT
■ Info available at that point is not voluminous

● Approach desirable
○ Maintain more information even during a

healthy-looking run
■ When crash-hang occurs, we can compare

against healthy-run events from a prior
successful run 11

Gist
● What to collect

○ User specifies salient events
■ Collected events compressed and stored

○ When we decompress what to do
■ Decompress and on-the-fly build features

● This way, the collected info can help diagnose crash
● Differential debugging (what went wrong from past

working version to now)
12

Comm graphs
● While doing decompress and on-the-fly build features

○ Suppress symmetries
○ Highlight outliers

● Symmetries are mined through
○ Comm graphs
○ Loop detection
○ Other ideas

● What’s good for debugging is a good starting point for
correctness
○ This way, correctness tools of the described kind

can find home within debugging tools

13

Sales
● People will use debugging tools

○ Correctness tools coming attached is a good idea
● Debugging needs happens-before

○ This serves as critical-path info for perf tools
● Synergy between perf (elephant) and debugging

(mouse) is greatly desirable

14

