
7/8/17  |  Department of Computer Science | Laboratory for Parallel Programming  |  Sergei Shudler  |  1 
 

 
Sergei Shudler 1, Alexandru Calotoiu1, Torsten Hoefler2, Felix Wolf1 

Isoefficiency in Practice: Configuring and 
Understanding the Performance of Task-
based Applications* 

1 TU Darmstadt, 2 ETH Zürich    * Published in PPoPP ‘17
  



7/8/17  |  Department of Computer Science | Laboratory for Parallel Programming  |  Sergei Shudler  |  2 
 

Agenda 

§  Overview 

§  Task dependency graph analysis 

§  Isoefficiency modeling 

§  Evaluation 

§  Conclusion 



7/8/17  |  Department of Computer Science | Laboratory for Parallel Programming  |  Sergei Shudler  |  3 
 

Efficiency of task-based applications – 
performance issues (1) 

Task graph Core count 
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Efficiency of task-based applications – 
performance issues (2) 

Task graph Core count Input size 

S
p

Efficiency =  
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Efficiency of task-based applications – 
performance issues (3) 

Efficiency =  

Input size Resource contention Core count 

S
p



7/8/17  |  Department of Computer Science | Laboratory for Parallel Programming  |  Sergei Shudler  |  6 
 

Addressed questions 

Fundamental scalability 
limitations in a task-

based program 

Poor scaling caused by 
resource contention 

overhead 

Further optimization 
potential: dependencies, 
scheduling, granularity 

Input size for a given core 
count 

Core count for a given 
input size 
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Task-based programs 

§  Task-based paradigms: Cilk, OmpSs, OpenMP,… 

§  Scheduling managed by the runtime system 

§  Example: 
   !

fib(5) 

fib(3) fib(4) 

fib(2) fib(3) 

#pragma omp task shared(x)!

x = fib( n – 1 );!

#pragma omp task shared(y)!

y = fib( n – 2 );!

#pragma omp taskwait!

return x + y;!
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Task dependency graph (TDG) 

§  Nodes – tasks, edges – dependencies 

§           – processing elements, input size 

§           – all the task times (work) 

§           – longest path (depth) 

§                       – average parallelism 

§           – execution time 

§                        – speedup 

10 

p,n

T1(n)

T∞(n)

T1 = 45
T∞ = 25

6 

1 7 3 

4 7 5 

2 

Tp(n)

Sp(n) =
T1(n)
Tp(n)

π (n) = T1(n)
T∞(n)
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TDG rules 

§  Brent’s lemma: 

§  Work rule:                           or:  
•  Ignore super-linear speedups for simplicity 

§  Depth rule:                           or:   
•  Cannot execute faster than the critical path 

§  In summary:  

Tp(n) ≥
T1(n)
p

Tp(n) ≥ T∞(n)

Sp(n) ≤ p

Sp(n) ≤ π (n)

Sp(n) ≤min p,π (n){ }

Tp(n) ≤
T1(n)−T∞(n)

p
+T∞(n)
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Efficiency & isoefficiency 

§  Efficiency is defined as:  

§  Isoefficiency binds together the core count  
and the input size for a specific,  
constant efficiency: 
•  A contour line on the efficiency  

surface 

§  Example: Mergesort 

•    

•  Surface depicts  

E(p,n) =
Sp(n)
p

≤min 1, π (n)
p

"
#
$

%
&
'
= Eub(p,n)

n = fE (p)

π (n) = logn

Isoefficiency functions 

Eub(p,n)
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Solution: Modeling (iso)efficiency functions 

                – reflects 
realistic performance 

                – contention-
free replays 

               – upper bound 
based on avg. parallelism 

Eac (p,n)

Ecf (p,n)

Eub(p,n)

Δcon = Ecf (p,n)−Eac (p,n)

Δstr = Eub(p,n)−Ecf (p,n)
Structural discrepancy: 
characterizes the optimization 
potential 

Contention discrepancy: shows 
how severe the resource 
contention is 
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Modeling workflow 

   

 

 

 

 

 

#pragma omp task!
…!
#pragma omp task!
…!
#pragma omp taskwait!

Instrument 
code (OmpSs 

runtime) 

Benchmark run / task 
replay 

… 

… 

 
 
 

Measurement  
results 

Empirical multi-
parameter performance 

modeling: 
 
 
 

Efficiency models π (n),T∞(n),E(p,n)

n 

p 
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Contention-free replay engine 

§  Uses OmpSs runtime API 

§  Replay on multiple threads 

§  No actual code execution (busy-waiting) 

§  Respects dependencies 

§  Same scheduling policy 

§  Minimum memory accesses 

 

void exec_task( double t )!
{!
   double t_c = … //curr time!
   double t_e = t_c + t;!
   while( t_c < t_e )!
      t_c = … //curr time!
}!
!
//…!
!
nanos_create_wd_compact(&exec_task)!
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Mj 

 

main() {  
   foo() 
   bar() 
   compute() 
} 

Instrumentation 

Performance measurements 

Input 

Output 

 
Mi 

 

Extra-P 

Human-readable, multi-parameter  
performance models of all functions 

 

Performance modeling with Extra-P 

f (x1,.., xm ) = ck xl
ikl ⋅ log2

jkl (xl )
l=1

m

∏
k=1

n

∑
A. Calotoiu, et al.: Fast Multi-Parameter 
Performance Modeling (CLUSTER ’16) 
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Extra-P 

Software 

http://www.scalasca.org/software/extra-p/download.html 

Case studies 
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Experiments setup 

§  Barcelona OpenMP Task Suite (BOTS) 
and Barcelona Application Repository 
(BAR) 
•  Cholesky, FFT, Fib, NQueens, Sort, 

SparseLU, Strassen 

§  NUMA node with four Intel Xeon E7-4890 
v2 processors (Ivy Bridge) 
•  60 cores in total 
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Depth and average parallelism models 
(excerpt) 

Application (origin) 

Cholesky (BAR) 

FFT (BAR) 

Nqueens (BOTS) 

Sort (BOTS) 

SparseLU (BAR) 

Strassen (BOTS) 

T∞(n) π (n)

Ο(n2.75 logn) Ο(n0.67 logn)
Ο(n1.75 logn) Ο(n)

Ο(n2 logn) Ο(n2.875 logn)
Ο( n )

Ο(n1.75 logn)
Ο(n0.75 )

Ο(n0.75 logn)
Ο(n2 logn)

Ο( n )

grows faster or as fast as T∞(n) π (n)
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Efficiency & isoefficiency models (excerpt) 

Cholesky models Fibonacci models 
Eac =1.09− 0.51 p +3.11⋅10−2 p logn

Ecf =1.14− 0.54 p +3.4 ⋅10−2 p logn

Eub =min 1, 2.29+ 2.35 ⋅10
−3n( ) p−1{ }

Eac = 0.98− 5.11⋅10
−3 p1.25 +1.76 ⋅10−3 p1.25 logn

Ecf = 0.97−1.46 ⋅10
−2 p1.25 + 9.26 ⋅10−3 p1.25 logn

Eub =min 1, 25.48+ 0.49n
2.75 logn( ) p−1{ }

C − Af (p)+Bf (p)g(n) à  C: max, -Af(p): reduction, Bf(p)g(n): gain  
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Efficiency & isoefficiency models (excerpt) 

Sort models Strassen models 

C − Af (p)+Bf (p)g(n) à  C: max, -Af(p): reduction, Bf(p)g(n): gain  

Eac = 0.99− 9.2 ⋅10
−3 p1.5 + 2.29 ⋅10−4 p1.5 logn

Ecf =1.0− 4.61⋅10
−2 p0.75 +1.62 ⋅10−3 p0.75 logn

Eub =min 1, 3.53+3.32 ⋅10
−2 n( ) p−1{ }

Eac =1.55−1.02p
0.25 + 4.59 ⋅10−2 p0.25 logn

Ecf =1.26− 0.65p
0.33 +3.89 ⋅10−2 p0.33 logn

Eub =min 1, 0.25n
0.75( ) p−1{ }
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For example (Strassen): 

Let E = 0.8 and p = 60: 

After solving: 

 

Co-Design aspects 

0.8 =1.55−1.02 ⋅600.25 + 4.59 ⋅10−2 ⋅600.25 logn

n = 83,600

App. Model Input size for p = 60, E = 0.8 

Fibonacci 

51 

51 

49 

Sort 

83,600 x 83,600 

12,680 x 12,680 

1,200 x 1,200 

Eac = 0.98− 5.11⋅10
−3 p1.25 +1.76 ⋅10−3 p1.25 logn

Ecf = 0.97−1.46 ⋅10
−2 p1.25 + 9.26 ⋅10−3 p1.25 logn

Eac =1.55−1.02p
0.25 + 4.59 ⋅10−2 p0.25 logn

Ecf =1.26− 0.65p
0.33 +3.89 ⋅10−2 p0.33 logn

Eub =min 1, 25.48+ 0.49n
2.75 logn( ) p−1{ }

Eub =min 1, 0.25n
0.75( ) p−1{ }

Eac =1.55−1.02p
0.25 + 4.59 ⋅10−2 p0.25 logn
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Conclusion 

§  Practical way to use isoefficiency 

§  Modeling of resource contention 
overhead 

§  Uncover hidden parallelism 
potential 

§  Co-design: derive input sizes for 
future machines 
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Future directions 

§  TDG construction based on OMPT (OpenMP 5.0) 
•  Support for LLVM OMP runtime & other runtimes 

•  Support for parallel loops 

§  Analysis of resource contention overhead per individual 
task / loop chunk 

•  Gather key PAPI counters at task / chunk level 

§  Modeling other TDG metrics: 
•  Relation between granularity and average  

parallelism: π(s) 

•  Optimal granularity? 

•  Maximum degree of concurrency: d(n) 

Joint work  
with LLNL 

D. Akhmetova et al., CLUSTER ‘15 


