
7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 1

Sergei Shudler 1, Alexandru Calotoiu1, Torsten Hoefler2, Felix Wolf1

Isoefficiency in Practice: Configuring and
Understanding the Performance of Task-
based Applications*

1 TU Darmstadt, 2 ETH Zürich * Published in PPoPP ‘17

7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 2

Agenda

§  Overview

§  Task dependency graph analysis

§  Isoefficiency modeling

§  Evaluation

§  Conclusion

7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 3

Efficiency of task-based applications –
performance issues (1)

Task graph Core count

Efficiency =

Input size

S
p

7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 4

Efficiency of task-based applications –
performance issues (2)

Task graph Core count Input size

S
p

Efficiency =

7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 5

Efficiency of task-based applications –
performance issues (3)

Efficiency =

Input size Resource contention Core count

S
p

7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 6

Addressed questions

Fundamental scalability
limitations in a task-

based program

Poor scaling caused by
resource contention

overhead

Further optimization
potential: dependencies,
scheduling, granularity

Input size for a given core
count

Core count for a given
input size

7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 7

Agenda

§  Overview

§  Task dependency graph analysis

§  Isoefficiency modeling

§  Evaluation

§  Conclusion

7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 8

Task-based programs

§  Task-based paradigms: Cilk, OmpSs, OpenMP,…

§  Scheduling managed by the runtime system

§  Example:
 !

fib(5)

fib(3) fib(4)

fib(2) fib(3)

#pragma omp task shared(x)!

x = fib(n – 1);!

#pragma omp task shared(y)!

y = fib(n – 2);!

#pragma omp taskwait!

return x + y;!

7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 9

Task dependency graph (TDG)

§  Nodes – tasks, edges – dependencies

§  – processing elements, input size

§  – all the task times (work)

§  – longest path (depth)

§  – average parallelism

§  – execution time

§  – speedup

10

p,n

T1(n)

T∞(n)

T1 = 45
T∞ = 25

6

1 7 3

4 7 5

2

Tp(n)

Sp(n) =
T1(n)
Tp(n)

π (n) = T1(n)
T∞(n)

7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 10

TDG rules

§  Brent’s lemma:

§  Work rule: or:
•  Ignore super-linear speedups for simplicity

§  Depth rule: or:
•  Cannot execute faster than the critical path

§  In summary:

Tp(n) ≥
T1(n)
p

Tp(n) ≥ T∞(n)

Sp(n) ≤ p

Sp(n) ≤ π (n)

Sp(n) ≤min p,π (n){ }

Tp(n) ≤
T1(n)−T∞(n)

p
+T∞(n)

7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 11

Agenda

§  Overview

§  Task dependency graph analysis

§  Isoefficiency modeling

§  Evaluation

§  Conclusion

7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 12

Efficiency & isoefficiency

§  Efficiency is defined as:

§  Isoefficiency binds together the core count
and the input size for a specific,
constant efficiency:
•  A contour line on the efficiency

surface

§  Example: Mergesort

• 

•  Surface depicts

E(p,n) =
Sp(n)
p

≤min 1, π (n)
p

"
#
$

%
&
'
= Eub(p,n)

n = fE (p)

π (n) = logn

Isoefficiency functions

Eub(p,n)

7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 13

Solution: Modeling (iso)efficiency functions

 – reflects
realistic performance

 – contention-
free replays

 – upper bound
based on avg. parallelism

Eac (p,n)

Ecf (p,n)

Eub(p,n)

Δcon = Ecf (p,n)−Eac (p,n)

Δstr = Eub(p,n)−Ecf (p,n)
Structural discrepancy:
characterizes the optimization
potential

Contention discrepancy: shows
how severe the resource
contention is

7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 14

Modeling workflow

#pragma omp task!
…!
#pragma omp task!
…!
#pragma omp taskwait!

Instrument
code (OmpSs

runtime)

Benchmark run / task
replay

…

…

Measurement
results

Empirical multi-
parameter performance

modeling:

Efficiency models π (n),T∞(n),E(p,n)

n

p

7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 15

Contention-free replay engine

§  Uses OmpSs runtime API

§  Replay on multiple threads

§  No actual code execution (busy-waiting)

§  Respects dependencies

§  Same scheduling policy

§  Minimum memory accesses

void exec_task(double t)!
{!
 double t_c = … //curr time!
 double t_e = t_c + t;!
 while(t_c < t_e)!
 t_c = … //curr time!
}!
!
//…!
!
nanos_create_wd_compact(&exec_task)!

7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 16

Mj

main() {
 foo()
 bar()
 compute()
}

Instrumentation

Performance measurements

Input

Output

Mi

Extra-P

Human-readable, multi-parameter
performance models of all functions

Performance modeling with Extra-P

f (x1,.., xm) = ck xl
ikl ⋅ log2

jkl (xl)
l=1

m

∏
k=1

n

∑
A. Calotoiu, et al.: Fast Multi-Parameter
Performance Modeling (CLUSTER ’16)

7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 17

Extra-P

Software

http://www.scalasca.org/software/extra-p/download.html

Case studies

7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 18

Agenda

§  Overview

§  Task dependency graph analysis

§  Isoefficiency modeling

§  Evaluation

§  Conclusion

7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 19

Experiments setup

§  Barcelona OpenMP Task Suite (BOTS)
and Barcelona Application Repository
(BAR)
•  Cholesky, FFT, Fib, NQueens, Sort,

SparseLU, Strassen

§  NUMA node with four Intel Xeon E7-4890
v2 processors (Ivy Bridge)
•  60 cores in total

7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 20

Depth and average parallelism models
(excerpt)

Application (origin)

Cholesky (BAR)

FFT (BAR)

Nqueens (BOTS)

Sort (BOTS)

SparseLU (BAR)

Strassen (BOTS)

T∞(n) π (n)

Ο(n2.75 logn) Ο(n0.67 logn)
Ο(n1.75 logn) Ο(n)

Ο(n2 logn) Ο(n2.875 logn)
Ο(n)

Ο(n1.75 logn)
Ο(n0.75)

Ο(n0.75 logn)
Ο(n2 logn)

Ο(n)

grows faster or as fast as T∞(n) π (n)

7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 21

Efficiency & isoefficiency models (excerpt)

Cholesky models Fibonacci models
Eac =1.09− 0.51 p +3.11⋅10−2 p logn

Ecf =1.14− 0.54 p +3.4 ⋅10−2 p logn

Eub =min 1, 2.29+ 2.35 ⋅10
−3n() p−1{ }

Eac = 0.98− 5.11⋅10
−3 p1.25 +1.76 ⋅10−3 p1.25 logn

Ecf = 0.97−1.46 ⋅10
−2 p1.25 + 9.26 ⋅10−3 p1.25 logn

Eub =min 1, 25.48+ 0.49n
2.75 logn() p−1{ }

C − Af (p)+Bf (p)g(n) à C: max, -Af(p): reduction, Bf(p)g(n): gain

7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 22

Efficiency & isoefficiency models (excerpt)

Sort models Strassen models

C − Af (p)+Bf (p)g(n) à C: max, -Af(p): reduction, Bf(p)g(n): gain

Eac = 0.99− 9.2 ⋅10
−3 p1.5 + 2.29 ⋅10−4 p1.5 logn

Ecf =1.0− 4.61⋅10
−2 p0.75 +1.62 ⋅10−3 p0.75 logn

Eub =min 1, 3.53+3.32 ⋅10
−2 n() p−1{ }

Eac =1.55−1.02p
0.25 + 4.59 ⋅10−2 p0.25 logn

Ecf =1.26− 0.65p
0.33 +3.89 ⋅10−2 p0.33 logn

Eub =min 1, 0.25n
0.75() p−1{ }

7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 23

For example (Strassen):

Let E = 0.8 and p = 60:

After solving:

Co-Design aspects

0.8 =1.55−1.02 ⋅600.25 + 4.59 ⋅10−2 ⋅600.25 logn

n = 83,600

App. Model Input size for p = 60, E = 0.8

Fibonacci

51

51

49

Sort

83,600 x 83,600

12,680 x 12,680

1,200 x 1,200

Eac = 0.98− 5.11⋅10
−3 p1.25 +1.76 ⋅10−3 p1.25 logn

Ecf = 0.97−1.46 ⋅10
−2 p1.25 + 9.26 ⋅10−3 p1.25 logn

Eac =1.55−1.02p
0.25 + 4.59 ⋅10−2 p0.25 logn

Ecf =1.26− 0.65p
0.33 +3.89 ⋅10−2 p0.33 logn

Eub =min 1, 25.48+ 0.49n
2.75 logn() p−1{ }

Eub =min 1, 0.25n
0.75() p−1{ }

Eac =1.55−1.02p
0.25 + 4.59 ⋅10−2 p0.25 logn

7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 24

Agenda

§  Overview

§  Task dependency graph analysis

§  Isoefficiency modeling

§  Evaluation

§  Conclusion

7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 25

Conclusion

§  Practical way to use isoefficiency

§  Modeling of resource contention
overhead

§  Uncover hidden parallelism
potential

§  Co-design: derive input sizes for
future machines

Work supported by:

A. Calotoiu et al.: Using Automated Performance
Modeling to Find Scalability Bugs in Complex
Codes (SC’13)

S. Shudler et al.: Exascaling Your Library: Will
Your Implementation Meet Your Expectations?
(ICS’15) 2015

A. Calotoiu et al.: Fast Multi-Parameter
Performance Modeling (CLUSTER ’16)

S. Shudler et al.: Isoefficiency in Practice:
Configuring and Understanding the
Performance of Task-based Applications
(PPoPP’17)

References (partial):

7/8/17 | Department of Computer Science | Laboratory for Parallel Programming | Sergei Shudler | 26

Future directions

§  TDG construction based on OMPT (OpenMP 5.0)
•  Support for LLVM OMP runtime & other runtimes

•  Support for parallel loops

§  Analysis of resource contention overhead per individual
task / loop chunk

•  Gather key PAPI counters at task / chunk level

§  Modeling other TDG metrics:
•  Relation between granularity and average

parallelism: π(s)

•  Optimal granularity?

•  Maximum degree of concurrency: d(n)

Joint work
with LLNL

D. Akhmetova et al., CLUSTER ‘15

